
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

CHARACTERIZATION OF THE FIELD 

EMISSION PROPERTIES OF CARBON 

NANOTUBE FILMS FORMED ON SILICON 

CARBIDE SUBSTRATES BY SURFACE 

DECOMPOSITION 

 
THESIS 

 
Michael C. Pochet, Captain, USAF 

AFIT/GE/ENG/06-47

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

DEPARTMENT OF THE AIR FORCE 
AIR UNIVERSITY 

 

AIR FORCE INSTITUTE OF TECHNOLOGY 
 

Wright-Patterson Air Force Base, Ohio 
 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 

 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The views expressed in this thesis are those of the author and do not reflect the official 
policy or position of the United States Air Force, Department of Defense, or the United 
States Government. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



AFIT/GE/ENG/06-47 

 
 
 

CHARACTERIZATION OF THE FIELD EMISSION PROPERTIES OF CARBON 

NANOTUBE FILMS FORMED ON SILICON CARBIDE SUBSTRATES BY 

SURFACE DECOMPOSITION 

 
 

THESIS 

 
 

Presented to the Faculty 

Department of Electrical and Computer Engineering 

Graduate School of Engineering and Management 

Air Force Institute of Technology 

Air University 

Air Education and Training Command 

In Partial Fulfillment of the Requirements for the 

Degree of Master of Science in Electrical Engineering 

 
 
 

Michael C. Pochet, BS, MBA 

Captain, USAF 

March 2006 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. 

 
 



AFIT/GE/ENG/06-47   

 
 
 
 

CHARACTERIZATION OF THE FIELD EMISSION PROPERTIES OF CARBON 

NANOTUBE FILMS FORMED ON SILICON CARBIDE SUBSTRATES BY 

SURFACE DECOMPOSITION 

 
 
 
 

Michael C. Pochet, BS, MBA 

Captain, USAF 

 
 
 
 
 
 

    Approved: 
 
 
 
             /signed/      24 Feb 2006 
 ____________________________________     
 Lt Col James A. Fellows (Chairman)    date 
 
 
             /signed/      24 Feb 2006 
 ____________________________________     
 Lt Col James A. Lott (Member)    date 
 
 
             /signed/      24 Feb 2006 
 ____________________________________     
 Maj LaVern A. Starman (Member)    date 
  
 



AFIT/GE/ENG/06-47 

Abstract 

 
Numerous works found in the literature report that carbon nanotubes have 

excellent field emission properties, emitting high electron current densities at low electric 

fields.  Recent work by the Air Force Research Laboratory Materials and Manufacturing 

Directorate has shown that dense arrays of vertically aligned carbon nanotubes (CNTs) 

form on the surface of silicon carbide wafers during high temperature (1400 – 1700oC) 

anneals under moderate vacuum conditions (10-2 – 10-5 Torr).   

The novelty of this growth method is that the carbon nanotubes form without the 

aid of a metal catalyst, allowing for potentially defect free carbon nanotubes to form.  In 

this thesis, carbon nanotube films were grown by the surface decomposition of silicon 

carbide substrates and the associated field emission characteristics were investigated to 

determine if films grown using this method possessed advantages over films grown using 

metal catalyzed methods.  The anneal time and vacuum conditions used during growth 

were varied to determine the optimal conditions necessary for fabricating an effective 

CNT emission surface.  Scanning electron microscopy (SEM), transmission electron 

microscopy (TEM), and atomic force microscopy (AFM) were used to characterize the 

surface properties of the fabricated films.  The associated turn-on voltage, threshold 

voltage, and maximum current density exhibited by the CNT films were measured using 

a standard vacuum tube diode test configuration.  The stability of the CNT films’ 

emission current was recorded over finite lengths of time.   

 iv



 The presence of adsorbed oxygen molecules on the CNT film’s surface altered the 

field emission performance of samples in a manner that was not fully understood.  In 

some instances, the application of high strength electric fields (ranging from 7.0 – 13.0 

V/μm) resulted in improved field emission characteristics (turn-on electric field and 

maximum emission current density exhibited); while in other instances, the field emission 

performances drastically deteriorated.   

 Although the samples tested did not demonstrate improved field emission 

characteristics when compared to values found in the literature for catalyst-grown CNT 

films, the data collected shows that further investigation is warranted regarding the 

emission capabilities of CNT films formed on SiC by surface decomposition.  From the 

measured CNT data, the lowest turn-on electric field was found to be lower than 3.0 

V/μm, while exhibiting a high maximum current density of 4.25 mA/cm2 at 6.7 V/μm. 
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CHARACTERIZATION OF THE FIELD EMISSION PROPERTIES OF CARBON 

NANOTUBE FILMS FORMED ON SILICON CARBIDE SUBSTRATES BY 

SURFACE DECOMPOSITION 

 
 

Chapter 1:  Introduction 

 

Carbon nanotubes (CNTs) have novel physical properties making them promising 

materials for future applications in field emission devices.   

Numerous works found in the literature shows that CNTs have excellent field 

emission properties, characterized by achievement of high current densities at low 

applied electric fields.  The goal of this research was to investigate the field emission 

properties of CNT films formed on silicon carbide substrates by surface decomposition.  

The research was performed by fabricating CNT films of various growth parameters on 

silicon carbide substrates and measuring the associated turn-on voltages (electric field 

needed to produce a current of 10 μA/cm2), threshold voltages (electric field needed to 

produce a current of 10 mA/cm2) and maximum current densities exhibited.  The defined 

turn-on and threshold voltage values were chosen from a literature reference as figures-

of-merit encountered in flat panel display technologies, as given by Bonard et al. [1].   

The data collected was compared with test data associated with field emission 

tests performed on CNT films grown using catalyst metals and non-CNT film emitters 

found in the literature.  Additionally, the CNT films’ stability and ability to withstand 

prolonged high field conditions was evaluated. 
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1.1 General Issue 

When flat-panel plasma viewing screens were first introduced, many believed that 

the quest for the ultimate flat-panel display was over.  The large, flat plasma screens with 

their dazzling brightness and wide viewing angles are the hottest items on the commercial 

television display market; their drawback, however, is that they consume a great deal of 

power.  Such an ultimate display technology should not be marred by such a costly flaw.  

It is this drawback that leads researchers to search for the next great innovation in display 

technologies: displays that consume less power than plasma screens while retaining their 

brightness, wide viewing angle, and size.   

In the forefront of emerging display technologies are displays based on the 

concept of field emission.  Field emission is a concept dating back to 1928, and may 

prove to be the basis for displays that consume far less power than conventional plasma 

displays while still offering wide viewing angles, unlike the liquid-crystal displays 

common in laptops, televisions, and small hand held video devices.  In “Watching the 

Nanotube,” Gehan Amaratunga [2] notes that a 38-inch color cathode ray tube (CRT) 

display consumes approximately 70 W, while a similarly sized plasma display consumes 

approximately 700 W.  Although the power consumption of a 38-inch plasma display has 

fallen to about 350 W in the past 2 years, its power consumption implies that if plasma 

technology were to become more commonplace, there would be significant implications 

for electricity generation and distribution.  Amaratunga also notes that a 38-inch field 

emission display is predicted to be able to provide the same performance as a plasma 

display while consuming only 50 to 70 W [2]. 
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Field emission displays use much less power than plasma displays because their 

intrinsic operation is far more efficient.  Plasma displays generate visible light in a multi-

step process: a gas is ionized, which in turn emits ultraviolet light that further stimulates a 

phosphor to produce visible light [2].  Field emission inherently does away with the high 

energy ionization step, and stimulates the phosphor directly with electrons.   

With the field emission process having been adequately understood since the mid 

20th century, one may question why the process has not already been capitalized upon for 

display technologies.  The answer is simply that until recently, the technology to make 

suitable field emission tips has not been available.  The technological capabilities of the 

past failed to provide adequate field emission materials and micro-processing 

capabilities.   

The key element of the field emission display is the field emission cathode.  The 

field emission cathode is the source of the quantum tunneling phenomenon that drives 

field emission.  In its simplest description, field emission functions not by heating the 

cathode to ‘boil off’ electrons over a potential barrier as in a conventional CRT, but by 

emitting electrons through a ‘thinned’ potential barrier.   

The primary drawback with field emission displays is that the field emission 

cathode experiences high temperature conditions during operation.  In the past, cathodes 

have been made of various metals in the form of tiny cones; the devices, however, 

routinely fail during operation because the emission tips become so hot they melt.  The 

melting of the emission tips causes deformations that damage the geometric 

characteristics needed for field emission.  Moreover, because a metal’s resistivity 

increases with increased temperature, a process known as thermal runaway is 
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characteristic of metal-cathode field emission devices.  Thermal runaway is a feedback 

cycle where a metal’s resistivity increases with increased temperature, and its increased 

resistance levels ultimately produces more heat, causing a damaging feedback loop.   

The ideal material for a field emission device is therefore one that: conducts 

electricity with virtually no resistance; can be micro-machined into micrometer or 

nanometer scale tips; does not exhibit a resistive heating feedback cycle; and can 

withstand high temperatures without deforming.   

With the discovery of CNTs in 1991 by Sumio Ijima [3], the ideal field emission 

material appears to have been found.   

1.2 Summary of Current Knowledge 

1.2.1 Carbon Nanotubes 

The most prominent characteristic of CNTs is simply their size, as they typically 

have diameters ranging from 1 to 50 nm and lengths of several micrometers [4].  This 

large length to radius ratio makes CNTs nearly one dimensional, where operating 

characteristics are driven heavily by quantum mechanics.  Additionally, because CNTs 

are held together by strong carbon-to-carbon bonds, they have an extremely high 

mechanical stability and chemical inertness.  The electrical properties of CNTs are even 

more promising, as theoretical predictions show that CNTs can conduct electricity with 

virtually no resistance.   

There are several methods to grow CNTs, each resulting in different purity, size, 

shape, and number of ‘walls’.  During the past decade, many research studies have 

focused on characterizing various preparation methods.  The three primary methods used 
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in preparing CNTs include: electric arc discharge; laser ablation; and chemical vapor 

deposition (CVD).  In most all of the derivatives of these three techniques, a metal 

catalyst (typically Co, Fe, and/or Ni) in the form of nano-particles (particle radius as 

small as 10 nm) is used ([5], [6]).   

One typical problem encountered during catalyst-driven synthesis is that there is 

an unwanted presence of metal catalyst particles in the CNT product.  The metal-catalyst 

particles contaminate the CNT product, thereby altering the characteristic properties of 

the CNT [7].  The catalyst residue and impurities have to be removed from the CNTs 

before experimental characterization.  The removal of the unwanted particles from the 

CNT is difficult, costly, time consuming, and usually damages the CNTs ([5], [8]).   

Further information regarding the properties of CNTs is found in Appendix A. 

1.2.2 Field Emission 

Field emission is a unique quantum-mechanical effect of electrons tunneling from 

a condensed matter into a vacuum.  The process occurs in the presence of high electric 

fields, typically on the order of 107 – 108 V/cm for planar metal surfaces [9].  In order to 

produce such high electric fields using reasonable potentials, the emitter is typically 

formed into a tip with an apex radius of curvature ranging from tens of angstroms to 

several micrometers, making the use of CNTs as field emission cathodes ideal.  The high 

electric field induces field emission by narrowing the potential barrier at the metal-

vacuum interface sufficiently for electrons to have a high probability of tunneling from 

the solid into the vacuum.  An overview of this potential barrier narrowing phenomena is 

given by Figure 1.  In Figure 1, as the applied voltage between the cathode and anode is 
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increased (thereby increasing the electric field strength) as given in the configuration 

shown in Figure 3(a), the negative slope of the potential barrier will increase, becoming 

narrower.  This narrowing phenomena, including descriptions of the work function, φ , 

and effective work function, effφ ,  is discussed in Chapter 2.  

 Energy

Fermi Energy

Cathode Vacuum

φ

effφ

Image Force

e- Tunneling

Voltage drop between 
cathode and anode

Potential Barrierx  
Figure 1. Illustration of the idealized energy barrier at the cathode-vacuum interface 
resulting from an applied voltage between the anode and cathode as given in Figure 3(a) 
and image forces, after [10].  Here x indicates the distance from the cathode to the anode. 

 

The quantitative description of field emission is known as Fowler-Nordheim (F-

N) theory, relating the emission current density to the applied electric field.  Great 

amounts of research have been conducted since the introduction of F-N theory to 

characterize the field emission characteristics of various geometries and dimensions of 

field emitters.  First published in 1928, F-N theory was originally developed to describe 

the field emission process from metallic materials [11].  Over the past several decades, 

this theory has been expanded and adapted to describe the field emission process from 

various semiconductor materials.  
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The material properties of CNTs make them potentially extraordinary field 

emission sources [12].  Their high conductivity, high aspect ratio, nanoscale diameters, 

and whisker-like shape support this claim.  A multi-walled CNT emitter can be heated by 

its field-emitted current up to 2000 K and remain stable [12].  This characteristic is 

distinctively different from metal emitters which fail due to thermal runaway. 

A current literature review reveals that several research groups are investigating 

the use of CNTs as field emission devices.  Tests have been performed on various 

orientations of CNTs grown on different substrates and in varied patterns through the use 

of metal-catalyzed fabrication methods.   

1.3 Scope 

Research by the Air Force Research Laboratory’s Materials and Manufacturing 

Directorate (AFRL/MLPS) has shown that vertically aligned CNT films form on both the 

silicon and carbon faces of silicon carbide wafers at high temperatures (approximately 

1700oC) through the decomposition of silicon carbide substrates.  Most notably, this 

growth method occurs without the use of catalyst metals, yielding CNTs that are 

potentially of greater purity than CNTs grown using catalyst metals [13].   

The CNT’s properties are derived from its homogeneous lattice structure, made 

entirely of carbon atoms, as Figure 2 illustrates.  When impurities are present (such as 

catalyst metal particles), the CNT’s electrical and mechanical properties are altered [7]. 

AFRL/MLPS’s plans involve studying the electrical properties of the CNT films 

grown using this novel catalyst-free manner on SiC.  Potential applications include their 

use as anodes or cathodes for high power microwave systems, or as chemical sensors for 
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use in homeland defense.  This thesis focused on demonstrating the use of the CNT films 

grown using the SiC decomposition method in field emission devices.  AFRL/MLPS’s 

interest in this topic is based on the goal of further characterizing the properties of CNT 

films fabricated in this manner, capitalizing on the perceived benefits of catalyst-free 

growth, and the high thermal conductivity of SiC.   

 
Figure 2. Illustration of the single-walled CNT structure [14]. 

 

Vacuum tests were used to investigate the field emission characteristics of the 

CNT films grown in the manner used by AFRL/MLPS.  The threshold and turn-on 

electric fields, along with the maximum achievable current density for CNT films grown, 

were measured and compared to one another in an effort to determine the optimal growth 

parameters for an emission surface.  The CNT growth times and vacuum pressures were 

varied, and the tips of the CNTs were opened, in an attempt to determine the most 

optimal growth conditions to obtain the most effective emission surface.  Scanning 
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electron microscopy (SEM), transmission electron microscopy (TEM), and atomic force 

microscopy (AFM) were used to characterize the surface properties of the CNT films. 

1.4 Approach 

The CNT films’ field emission properties was characterized by creating an 

experimental test apparatus and collecting data relating the applied voltage to the 

observed emission current.  With the recorded field emission current as a function of 

applied electric field, the field enhancement factor was calculated to characterize the 

CNT emission surface and compare it to other field emitters found in the literature.  In 

addition, the stability of the CNT films’ emission current was recorded over finite lengths 

of time (15-second intervals).  The experimental setup used is illustrated in Figure 3 (a) 

and (b), with the vacuum chamber operated in the mid 10-7 Torr range.   

1.5 Main Results 

Although the samples fabricated and tested did not demonstrate improved field 

emission characteristics when compared to values found in the literature, the data 

collected show that further investigation is warranted regarding the emission capabilities 

of CNT films grown on SiC substrates by surface decomposition.  From the collected 

data, the lowest turn-on electric field was found to be lower than 3.0 V/μm, while 

exhibiting a high maximum current density of 4.25 mA/cm2 at 6.7 V/μm; these values are 

found to be well within values found in current literature.    
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Figure 3. Illustrations of the: (a) vacuum tube diode test setup, and (b) overall test setup. 
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Chapter 2:  Literature & Theory Review 

This chapter discusses the field emission process, CNT field emission studies 

found in the current literature, and the formation of CNTs on silicon carbide substrates by 

surface decomposition.   

2.1 Field Emission Background 

When an electric field on the order of 107 V/cm is applied to a solid surface with 

the negative electrical potential on the solid and a positive (anode) potential near the solid 

surface, electrons inside the solid are emitted into the vacuum toward the anode via 

quantum mechanical tunneling ([9], [15]).  The strong electric fields necessary for field 

emission can be attained on the tips of very thin needles, as electric fields concentrate at 

sharp points [15].  High electric fields induce the field emission of electrons by 

sufficiently narrowing the potential barrier at the metal-vacuum interface for electrons to 

have a high probability of tunneling from the solid into the vacuum.   

 An overview of this potential barrier narrowing phenomenon is given by Figure 4.  

Figure 4(a) illustrates the ideal potential barrier at the cathode to vacuum interface for the 

case of zero applied voltage to the anode.  Figure 4(b) illustrates the potential barrier due 

to image forces (described later in this section).  Figure 4(c) illustrates the potential 

barrier due to an applied voltage at the anode as shown in Figure 5.  The conditions 

illustrated in Figure 4(c) suggest that as the voltage is increased (increasing the electric 

field strength), the potential barrier becomes more and more narrow.  Figure 4(d) shows 

the total potential barrier as a summation of the effects given in Figure 4 (a) through (c).  

Further detail regarding image forces and applied voltages is given in section 2.2.   
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Figure 4. Illustration of the idealized energy barrier at the cathode-vacuum interface 
under (a) ideal conditions with bias applied, (b) image forces, (c) an applied voltage, and 
(d) the superposition of barrier effects, after [10].  Here x indicates the distance from the 
cathode to the anode.   
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Field emission, also commonly referred to as cold cathode emission, contrasts 

with thermionic emission.  In thermionic emission, electron emission occurs over the 

potential barrier rather than through it.  Thermionic emission occurs from a solid to 

vacuum at extremely high temperatures and low electric fields [9].   

An illustration of the vacuum tube diode field emission test setup is given in 

Figure 5, where  d  is the distance between the anode and cathode,  V  is the voltage 

applied between the anode and cathode,  I  is the current flowing through the diode, and 

the film is the field emission tip material or geometric shape under investigation. 

Cathode

Anode

d

I

Film
V

+
-

•
 

Figure 5. Illustration of the vacuum tube diode field emission test setup, after [16].   

 

2.1.1 Fowler-Nordheim Theory Overview 

Fowler-Nordheim (F-N) theory is based on six assumptions.  The first assumption 

states that the metal emission surface obeys the Sommerfeld free electron model with 

Fermi-Dirac statistics [10].  The basic premise of the Sommerfeld free electron model 

states that electrons inside the metal are entirely free to roam around, but are unable to 

leave the metal [10].  The electrons inside the metal are effectively bound by an infinite 

potential barrier, and the potential energy level of electrons inside the metal is uniform.  

Fermi-Dirac statistics describe the probability of occupation of an energy state within the 

metal.   
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The second assumption states that the metal emission surface is taken to be 

planar, yielding a one-dimensional situation [9].  Next, F-N theory assumes that the 

potential within the metal is considered constant.  An externally applied electric field is 

assumed to have no effect on the electron states inside the metal [9].  The next 

assumption states that, according to the laws of electrostatics, the forces acting on an 

electron in front of an infinitely conducting sheet are given by replacing the sheet with a 

‘mirror’ charge, which is described as a positively-charged particle the same distance 

behind the sheet [10].  The force between these two charges is known as the image force, 

given by [10]  

 2
2

1
4 (2 )( )

o
e

xF x πε=  (2.1) 

where  F  is force (Newtons),  oε   is the permittivity of free space (8.854 x 10-12 

Farads/m),  e  is the elementary electron charge (1.602 x 10-19 Coulombs), and  x  is the 

distance from the infinitely large conducting sheet (m).  The value of  1/(4 )oπε  is equal 

to .   9 29.0 10   /N m C× 2

The potential energy is the integral of this force from the point  x  to infinity, and 

is given by [10] 

 2
16( ) ( )

x
o

U x F y dy e
xπε

∞

= = −∫  (2.2) 

where  U  is the potential energy (V), and  y  is the variable of integration.  The F-N 

calculation is assumed to be performed at the temperature T = 0 K, indicating that the 

majority of the cathode’s free electrons reside at the metal’s Fermi level [9].  Lastly, F-N 
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theory assumes that the electric field between the anode and cathode (E) is constant.  The 

potential due to the applied anode voltage in the vacuum region is therefore given by 

 ( )U x eEx= −  (2.3) 

where  E  is the applied electric field strength in Volts per meter (V/m), and  x  is the 

distance from the cathode in meters.  Note that script E  is the applied electric field 

strength (V/m), and non-script  E  is energy.   

 Taking into account the electric field and the image forces, the potentials can be 

added to yield the potential barrier as given by Figure 4 (d).  The maximum potential 

barrier present near the metal-vacuum interface can be calculated under the condition 

given by [9] 

 2
16 0(

o
d e

xdx eExπε )− − =  (2.4) 

Solving equation (2.4) leads to the value for the maximum potential of the barrier, 

given by equation (2.5).  The energy needed to escape from the metal cathode is reduced 

by  |Vmax|. 

 max
1/2

4( )
o

EeU e πε= −  (2.5) 

 The effective work function,  effφ , of the metal cathode is thus reduced from  φ   

to that given by equation (2.6), and is illustrated in Figure 4 (d), which shows the total 

potential at the metal-vacuum interface due to an applied voltage and image forces. 

 1/2
4( )eff o

Eee πεφ φ= −  (2.6) 
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Figure 4 (d) illustrates the case where the presence of an electric field may 

increase the emission current because more electrons are likely to escape over the 

reduced barrier (note that Figure 4 (d) is not to scale in regards to the work function, 

effective work function, and potential barrier width).  This is not the driver of field 

emission, as the dominant source of emitted electrons is through the barrier as opposed to 

over the barrier.  At T = 0 K (a given assumption of F-N theory), the metal’s electrons are 

located at its Fermi level.  The field emission process occurs practically independent of 

temperature.  The application of a high voltage between the cathode and anode results in 

the potential barrier of Figure 4 (d) becoming narrower and facilitating the electron 

tunneling process.    

 To derive a theoretical formula for field emission, the tunneling probability of the 

electrons moving towards the surface is calculated.  From the shape of the potential 

barrier, given by Figure 4 (d), it follows that electrons with higher energy can more easily 

tunnel through the barrier.  At low temperatures, however, there are few of such higher- 

energy electrons, causing the tunneling current to originate from electrons near the Fermi 

level.  The width of the potential barrier can be calculated by solving for the barrier width 

at the Fermi level, xF , in equation (2.7) and the barrier height the electrons face is taken 

to be effφ  [10]. 

 FeExφ− = −  (2.7) 

The tunneling current can be approximated by equation (2.8).  Substituting 

equation (2.7) into equation (2.8), the relationship given by equation (2.9) is found [10]. 

The exponential factor given by equation (2.9) is a strong approximation to the exact 
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formula, which is described in the next section.  Equation (2.9) is the central equation of 

F-N theory, relating emission current density to the applied electric field.   

 
1/2(2 )

exp F
effm

J
φ

− x
⎡ ⎤

≈ ⎢ ⎥
⎢ ⎥⎣ ⎦

 (2.8) 

where  J  is the tunneling current density,   is the reduced Planck’s constant (given by 

h/2π), and  m  is the free electron mass (9.11 x 10-31 kg). 

 
1/ 21/2(2 )exp effm
EeJ

φ φ⎡ ⎤
≈ −⎢ ⎥

⎣ ⎦
 (2.9) 

2.1.2 A Detailed Look at Fowler-Nordheim Theory 

To calculate the emission current, F-N theory begins by determining the barrier 

transparency,  D , and the flow,  n , of electrons incident on the barrier from within the 

metal.  Next, both  D  and  n  are integrated over the electron energy on which they are 

both dependent [9], [17].  Under the assumptions given in the previous section, the 

current density is given by [17] 

 
0

J = e (E ) (E , ) Ex xn D F d x

∞

∫ , (2.10) 

where  e  is the electron charge, n(Ex)  is the number of electrons per second having 

energies between  Ex  and  Ex + dEx   and incident on 1 cm2 of the barrier surface from 

within the metal.  The term  n(Ex)  is quantitatively based on Fermi-Dirac statistics.  The 

term  Ex  is calculated by 

 E  = x
x

2p
2m

, (2.11) 
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where Ex  is the part of the electron kinetic energy carried by the momentum component 

px  normal to the surface,  m  is the free electron rest mass, and  E  is the applied electric 

field [9].   

 The barrier transparency is calculated using the semi-classical method of the 

Wentzel-Kramers-Brillouin (WKB) approximation [9].  The WKB approximation is a 

special technique for obtaining an approximation to the solution of the one-dimensional 

time-independent Schrödinger equation, valid when the wavelength of the solution varies 

slowly with position. With an applied electric field,  E , the potential function is given by  

 2
16( )

o
e

xU x eExπε= − − . (2.12) 

An illustration of the potential energy of an electron as a function of the distance  

x from a metal surface is given in Figure 6, showing the total potential barrier, and the 

barriers resulting from the image force, and the external applied potential.  In the figure, 

Up  is the potential well depth in the metal, and  φ   is the work function of the metal. 
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Figure 6. Barrier at the metal-vacuum interface showing the electron potential energy, 
U(x) (in eV), as a function of the distance x from the metal surface [9].  

 

Derivations by Fursey et al. [9] show that the transparency is given by 

 
3/21/2 E8 (2 )

3(E exp, ) ( )
x

x
m

heD EE π ϕ−⎡ ⎤= ⎢ ⎥⎣ ⎦
y  (2.13) 

where  h  is Planck’s constant,  e  is the elementary electron charge,  m  is the free 

electron rest mass,  Ex  is a given energy level,  E  is the electric field strength, and  ( )yϕ   

is the Nordheim function given by [9], [17] 

 
1/ 21/ 2 2 1/ 2 2 1/ 2( ) 2 1 (1 ) ( ) [1 (1 ) ] ( )y y E k y Kϕ ⎡ ⎤ ⎡ ⎤= + − − − −⎣ ⎦ ⎣ ⎦ k . (2.14) 

In equation (2.14),  

 
1/23( )e Ey φ=  (2.15) 

Equation (2.14) is further dissected such that [9], [17] 
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2

1/2
0

2 2(1 sin )
E( ) d

k
k

π

α
α−

= ∫ , (2.16) 

and  

 
2 1

2

0

2 2( ) (1 sin )K k k d

π

α α= −∫  (2.17) 

are complete elliptic integrals of the first and second kinds, and  

 2 2 1/ 2

2 1/ 2
2(1 )

1 (1 )
y
y

k −
+ −

= . (2.18) 

Using equation (2.10), the field emission current density at T = 0 K follows the 

model given by [9] 

 7 3/23 2
2 6.83 108 ( )

( )[e E
Eh t y

J ]yφ
π φ

ϕ⋅−=  (2.19) 

Substituting the values of constants and expressing  φ   in eV,  F  in V/cm, and  J  in 

A/cm2 yields another form of the central F-N theory equation [9]: 

 
3/ 26 72

2( )
1.54 10 6.83 10 ( )[E

Et y
J y ]φ

φ ϕ= ⋅ ⋅−  (2.20) 

where  ( )4(3.79 10 ) /y E φ−= × × , and ( ) is ( ) (2 / 3)( ( ) / )t y y y d y dyϕ ϕ− .  The terms  

( )yϕ  and  t(y)  are tabulated and can be referenced in the literature [9].  Because  t(y)  is 

often close to unity and varies weakly with  y , it is commonly set to unity [9].  The 

Nordheim function ( )yϕ   varies significantly with  y [9].   

2.1.3 Deviations from Theory Due to Nanometer-Scale Emitter Tips 

F-N theory gives a fair description of the field emission process for atomically 

smooth emitters having a radius greater than 0.1 μm [9].  In this case, the width of the 
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potential barrier is significantly less than the cathode’s radius of curvature.  Additionally, 

atomic-scale surface roughness and variations of the work function between different 

emitter faces do not result in a significant deviation from the results obtained with the 

one-dimensional approximation [9]. 

As the radii of cathodes used enter the nanometer range, deviations from F-N 

theory emerge as the field emitter’s radius of curvature begins to approach the cathode’s 

potential barrier width.  Emitter radii in the nanometer range negate the assumption of a 

one-dimensional barrier and field uniformity over the apex of the tip, requiring the three-

dimensional Schrödinger equation to be solved in order to calculate the behavior of the 

potential near the surface accounting for its variation with radius, re [9].   

An in-depth analysis of the effects of non-planar abnormalities on field emission 

surfaces is made by Forbes et al. [18].  In their work, Forbes et al. describe what is 

known as the field enhancement factor, γ , (also given as β   by some sources), which is 

given by 

 / ME Eγ = . (2.21) 

 Forbes et al. describe the field enhancement factor in the following way [18]: 

In geometrical configurations resembling a parallel-plate capacitor, the 
macroscopic field,  EM , is defined by:  EM = V/d, where  V  is the voltage applied 
across a gap of thickness d.  The local field  E  is the field close to the emitting 
surface (within 1-2 nm of the surface atoms) that determines the barrier through 
which field-emitted electrons tunnel.  This field E is sometimes called the barrier 
field.  E  is typically a few V/nm, and is often significantly higher than  EM.  Their 
ratio defines a field-enhancement factor γ, γ = E/EM .   

  
 The geometrical models for a field-enhancing micro- or nano-protrusion, as 

presented by Forbes et al., are illustrated in Figure 7 and include: a) hemisphere on a 

plane, b) floating sphere at emitter-plane potential, c) hemisphere on a post, and d) hemi-
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ellipsoid on a plane.  In the diagram,  ρ  is taken to be the sphere or hemisphere radius 

[18].   

 
Figure 7. Geometrical models for a field-enhancing micro/nano-protrusion [18]. 

 

2.2 Field Emission from Carbon Nanotubes 

The material properties of CNTs make them potentially extraordinary field 

emission sources [12].  Their high conductivity, high aspect ratio, nanoscale diameters, 

and whisker-like shape support this claim.  For an in-depth review of the electrical and 

mechanical properties of CNTs, along with information regarding the common 

fabrication methods of CNTs, please refer to Appendix A.  

CNTs are robust emitters in vacuum, even at high temperatures.  A multi-walled 

CNT emitter can be heated by its field-emitted current up to 2000 K and remain stable 

 22



[12].  This characteristic is distinctively different from metal emitters which fail due to 

thermal runaway.  In metals, resistance increases with temperature, meaning that more 

heat is produced as higher current is drawn.  The combination of high temperature and 

electric field causes field sharpening of the emitter tips by surface diffusion, which in 

turn increases the local field, current, and temperature.  This positive feedback 

mechanism causes unstable thermal runaway which leads to emitter failure for metal-

based emitters.  The resistance of a CNT, in contrast, decreases with an increase in 

temperature which limits heat generation.  Surface diffusion and electromigration is less 

likely in the strong carbon to carbon covalent bonds of the CNT [12].  

Although one would think that single-wall CNTs would be the emitter of choice 

due to their small diameter, multi-walled tubes are usually used in field emission 

applications because they are semi-metallic, more robust, and are stiffer.  For field 

emission applications, vertically aligned CNTs, rather than randomly oriented CNTs, are 

desired because the tips of the CNTs in the vertically-aligned orientation are exposed to 

the applied electric field and thus work more efficiently as the emitting tip.  Moreover, 

for applications requiring high emission currents, it is necessary to space the emitters 

twice their height apart from one another to eliminate electric field screening effects 

between adjacent CNT emitters [12].   

CNT field emission deviates from the F-N model, as CNTs cannot be considered 

usual metallic emitters.  This deviation typically results in slope changes of the 

characteristic F-N plot [19].  The deviations from the F-N model are attributed to space-

charge effects [1].  Space-charge is defined as the electrostatic interaction of electrons in 

the emitted beam.  The field created by the high density of negatively charged electrons 
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effectively screens the cathode from the accelerating field of the positively charged 

anode; once a limiting density is reached, no further electrons can be added to the beam. 

A difference exists in the emission properties of closed and opened multi-walled 

CNTs.  Opened tubes are far less efficient emitters than closed ones, with the voltage 

needed to obtain the same emission current density typically twice that of closed tubes 

(proven experimentally by [1]).  This is an interesting finding due to the smaller effective 

curvature of opened CNTs.  It is believed that foreign atoms (such as oxygen) are 

attracted to the free dangling bonds at the ends of the opened CNTs, resulting in localized 

electron states.  Since these states lie well below the Fermi energy of the CNT, electrons 

are less likely to be emitted.  Conversely, experimental work to condition the CNT field 

emission tips and cause the desorption of foreign atoms, has shown that opened CNTs 

provide the most favorable current-voltage relationship [16].   

2.2.1 Carbon Nanotube Field Emission Tests 

The following section discusses results and observations from the testing of CNT 

films used as field emission sources found in current literature.  

In [20], Li et al. discussed the growth of a CNT film on a test substrate for use as 

a field emission source.  Their experimental work concluded that CNTs films make 

strong candidates for field emission sources, as the films demonstrated low turn-on 

electric fields, a uniform and high emission current density, and good emission stability. 

The CNT test apparatus used by Li et al. is shown in Figure 8.  The anode 

consisted of an indium-tin-oxide (ITO) glass plate coated with phosphor.  A 200 nm thick 

layer of aluminum was coated on the red phosphor layer in order to protect the phosphor 
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layer, as well as to aid in removing accumulating charge.  A 75 µm thick insulating layer 

was inserted between the anode and cathode.  The cathode and anode were then 

encapsulated in cylindrical glass vacuum tube.  Getters (desiccant material) were 

mounted within the evacuated glass tube to absorb possible out-gassing.  The emission 

current density was measured by a Tektronix TX3 multi-meter connected to a computer.  

The CNTs used in Li et al.’s testing were multi-walled with inner and outer 

diameters of 20 to 100 nm, respectively.  The CNT lengths were about 1-2 µm [20].  

Their experimental method consisted of taking measurements of the current density 

versus the applied electric field by applying a voltage to the anode at a vacuum of 4 x 10-7 

Torr.  Figure 9 shows their recorded emission current density plotted versus electric field 

strength.  Figure 10 shows the F-N representation of the experimental data, which is 

given by plotting  ln(I/V2)  versus  1/V.   

       
Figure 8. Schematic of Li et al.’s field emission test setup [20]. 
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Figure 9. Plotted current density vs. electric field data collected during Li and 
coworkers’ field emission testing [20]. 

 

 
Figure 10. The corresponding Fowler-Nordheim plot of the field emission data plotted in 
Figure 9, indicating a conventional field emission trend [20].   
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A recordable emission current started at an electric field of 4 V/µm, and the 

emission current density approached 1 mA/cm2 at an electric field of 9.5 V/µm.  The 

linear relationship of the F-N curve in Figure 10 shows that the measured current was the 

result of field emission according to F-N theory.  Further analysis of the experimental 

data allowed for the calculation of the field enhancement factor, β  (also denoted by γ  in 

some sources).   

To calculate the field enhancement factor, β , Li et al. used the F-N formula 

given in equation (2.22) [20].  The constants introduced in equation (2.23) are defined in 

equations (2.23), (2.24), and (2.25) [20].  For equations (2.23) and (2.24),  'β   is defined 

as the local field conversion factor at the emitting surface, B = 6.87 x 107,  φ   is the CNT 

work function and is approximately 4.5 eV, and  d  is the distance between the anode and 

cathode in cm.  Combining equations (2.23) through (2.25) and knowing that the 

parameter  b  is given by the slope of the plot in Figure 10, the electric field enhancement 

factor is calculated using equation (2.26).  Based on their collected data and the equations 

given, Li et al. calculated the enhancement factor to be 4,012 [20].    

 2 exp( )b
VI aV −≈  (2.22) 

 'loc VE β=  (2.23) 

 
3/20.95

'
Bb φ
β=  (2.24) 

 loc
V
dE β=  (2.25) 

 
3/20.95B

b
dφβ =  (2.26) 
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Figure 11 shows the emission current density as a function of time for an applied 

electric field of 9 V/ μm [20].  The average fluctuation of the emission current density 

was less than 5%, indicating an extremely stable emission process.   

 

 
Figure 11. Normalized current fluctuation over time at 9 V/μm applied electric field 
collected by Li et al. during field emission testing [20].  Here time is given in hours, not 
per hours as indicated by the figure.   

 

Manohara et al. [19] discuss results and observations from the testing of single-

walled and multi-walled CNTs as field-emission sources.  One basic conclusion was that 

high density CNT films suffered from enhanced screening effects, causing a decreased 

field emission current.  Their experimental results showed that the highest emission 

currents were measured from disordered and less dense multi-walled CNT films.   

The single-walled CNT films tested by Manohara et al. were grown by chemical 

vapor deposition (CVD) with methane as the feed gas.  CNT growth specifics included 

using iron nitrate in an isopropanol solution as the catalyst metal, which was spun onto 

 28



silicon substrates.  Multi-walled CNTs were grown through a plasma-enhanced CVD 

process on patterned silicon and silicon dioxide substrates at temperatures below 600oC. 

The field emission tests were conducted in the diode configuration, described by 

the setup in Figure 12 (right), as well as in Figure 5.  The test template was fabricated on 

a 5 mm by 5 mm die of degenerately doped silicon substrate with an oxide layer 

approximately 1.5 µm.  A 3 mm diameter trench 10 µm deep was then etched into the 

substrate.  Using the photoresist from the previous etch step, the catalyst metal was 

selectively deposited inside the trench and CNTs were grown.   

 

            
Figure 12. CNT sample template with 3 mm diameter trench (left), and a schematic of 
the measurement setup inside a high vacuum chamber (right) [19]. 

 

Testing involved using a transparent glass slide coated with ITO as the anode.  

The anode was also coated with blue-pigmented phosphor in order to identify the 

emission spots.  The tests were conducted at vacuum levels in the range of 10-6 Torr.  

Manohara et al. note that one advantage of CNTs as field emitters is that they are robust 

and operate well in high vacuums unlike other field emission tips, which require ultra 

high vacuums (10-9 Torr) for successful operation [19].  The CNT sample template and a 
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schematic of the measurement setup inside a high vacuum chamber are illustrated in 

Figure 12 (left).   

Manohara et al. [19] presented a numerical analysis of their test data similar to 

that used by Li et al [20].  Figures 13 and 14 their plotted results.  The conventionally 

accepted concept is that if F-N plot shown in Figure 14 is linear, then the observed 

emission current is a result of field emission, as opposed to thermionic emission or other 

sources of pre-breakdown currents.  

Manohara et al. [19] fit their experimental data to the F-N relationship given by 

equation (2.27), which is merely an algebraic manipulation of equation (2.22) used by Li 

et al. [20] in calculating the electric field enhancement factor from their experimental 

data.  In equation (2.27),  I  represents the emission current in amperes,  V  represents the 

applied biasing voltage in volts, and  a , and  b  are constants calculated by equations 

(2.28) and (2.29), respectively.  In equations (2.27) and (2.29),  β   represents the field 

enhancement factor,  Ae  represents the actual emission area in cm2,  φ   represents the 

CNT’s work function in eV, and  d  is the gap between the anode and CNT tip in μm.   

 2ln( ) ln( ) bI
VV a= −  (2.27) 

 6 2
21.54 10 ( e )A

da β
φ

−
⋅×=  (2.28) 

 7 3/2
6.8 10 ( db φ

β )⋅×=  (2.29)  
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Figure 13. Plot of the measured field emission data given by Manohara et al. [19]. 

 

 
Figure 14. F-N plot of the measured field emission data from Manohara et al. [19]. 
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 The data plotted in Figure 14 can be represented by a line of the form  y = mx + c.  

In the plot, ln(I/V2) is plotted versus  1/V  and is referred to as the characteristic F-N 

curve.  As stated previously, linearity of this curve indicates that field emission is the 

dominant source of the observed current.  By measuring the slope of the F-N line and its 

y-axis intercept, the constants  b  and  a  can be determined, respectively.  Knowing the 

values of  a  and  b , the actual emission area and the field enhancement factor can be 

determined using equations (2.28) and (2.29) [19].   

Manohara et al. explain the lack of linearity in their F-N curve shown in Figure 14 

by concluding the following: the field emission area contains CNTs of various sizes, 

which results in a range of threshold voltages for field emission as opposed to a single 

value; and that field emission is impacted by absorbed impurities which decrease the 

local work function, causing a lower threshold for field emission at various points in the 

emission area [19].   

Based on the data plotted in Figure 14, Manohara et al. approximated the values 

of the  a  and  b  constants to be 1.98 x 10-6 and 5,257, respectively.  Next, knowing that 

the separation  d  is approximately 160 μm, and the work function of the CNTs is 

approximately 4.5 eV, Manohara et al. calculated the effective emission area, Ae, to be 

3.79 x 10-14 m2.  Based on this calculated emission area, they concluded that only 19 

CNTs participated in field emission from one of their samples.  This low number is 

concluded to be due to electrostatic screening, and is remarkable in that several billion 

CNTs are present within the sample’s emission area.  This low number also shows that 

there is great potential for much higher emission current densities if CNT growth can be 

efficiently controlled. 
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Additional conclusions by Manohara et al. were drawn from repeatability tests 

conducted on two samples to investigate how the emission current varied at a given 

voltage over a period of time and over different cycles.  From their trials, they concluded 

“that the average value of emission current for a given field was influenced by the rate at 

which the field was attained [19].”  Their data showed that by rapidly increasing the 

biasing voltage to its set point, the average emission decreased by 2 – 3%.  The cause for 

this decrease was not known.   

Lastly, Manohara et al. noted that under strong electric fields, the samples failed 

due to electric arcing and the resulting removal of the CNTs from the surface.  Figure 15 

shows the images Manohara et al. [19] provided of the surface damage, although the 

scale was not given.   

 

 
Figure 15. SEM images of a damaged CNT surface, purportedly due to arcing under high 
fields [19]. 
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 The analysis method used here to calculate the actual field emission area is not 

found in any other works in the literature.  Due to this oddity, this method of data 

interpretation will not be implemented during the experimental phase of this thesis. 

2.2.2 Experimental Field Emission Values from the Literature 

To analyze the field emission characteristics of the samples tested, known values 

for field emitters found in the literature are necessary.  Li et al. [20] reported a turn-on 

electric field of 4 V/μm, an emission current density of 1 mA/cm2 at an electric field of 

9.5 V/μm, and a field enhancement factor of 4012.  Table 1 shows the turn-on electric 

fields, Eto, and threshold electric fields, Ethr, in V/μm for various film emitters given by 

Bonard et al. [1].  The non-CNT film emitter values given by Bonard et al. were 

collected from various works to show that their test results achieved turn-on and 

threshold current density levels at lower excitation fields.  [1] notes that several of their 

values, identified with a superscript a (a), were extrapolated from lower current 

measurements and the true values may be either unattainable or much higher than the 

extrapolated value.  Note that in the table the references given are the references used by 

[1], not references used for this thesis. 

Table 1.  Turn-on and threshold fields for various film emitters [1]. 
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Table 2 shows a compilation of field emission test results collected by Bonard et 

al. in [21].  The table shows that successful field emission has been reported for 

numerous types of CNT films.  In the table,  d  is the inter-electrode distance,  S  is the 

emission area,  Jmax  is the maximum current obtained without destruction of the emitter, 

n.a. means that the value was not indicated or could not be deduced by Bonard et al. in 

the reference’s figures, and * indicates that the value was estimated or extrapolated from 

the data presented by the referenced paper.  Note that in the table the references given are 

the references used by [21], not references used for this thesis. 

Table 2.  Field emission characteristics of various CNT films [21]. 

 
 

Table 3 compares the field emission characteristics of various film types tested 

using the same experimental parameters.  With some experimental variables controlled, 
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the impact of individual independent variables was investigated.  Although Bonard et al. 

[21] drew some conclusions from comparing the tabulated data, the interpretation of the 

tabulated results was difficult and misleading because most groups used varied 

experimental procedures, varied more than one parameter, or did not characterize their 

samples completely.  Note that in the table the references given are the references used by 

[21], not references used for this thesis. 

Table 3.  Field emission characteristics of CNT films with identical experimental 
conditions [21]. 

 

 
 The comparison of the experimental results found in the literature is often 

beleaguered by minor variations of some sort in the way samples are prepared or handled, 

the experimental procedures used, or the experimental setup implemented.  It is for this 
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reason that trends in data from some sources negate the trends shown by others.  The 

question as to whether open or closed CNTs show more favorable field emission 

characteristics falls under this category.  When comparing the field emission 

characteristics of open or closed CNT films, further details as to how the CNTs were 

initially fabricated, how they were opened, and other post-fabrication steps need to be 

considered.   

2.3 Formation of Carbon Nanotube Films on Silicon Carbide  

CNTs are typically produced by either arc discharge, laser ablation of a carbon 

target, or chemical vapor deposition.  In each of these methods, CNT growth is made 

possible by the presence of metallic particles (typically Co, Fe, and/or Ni) acting as 

catalysts [6].  The growth of aligned CNT films on the surface of SiC substrates through 

surface decomposition presents a promising means of CNT growth, as metal catalyst are 

not necessary.  The CNTs formed using this method are free of metal catalyst materials 

that alter the characteristic properties of CNTs ([7], [15]).   

With catalyst-driven growth methods, the metal catalyst and non-nanotube carbon 

impurities need to be removed without damaging the CNT.  To remove the catalyst metal 

and obtain greater purity, many purification methods have been developed [22].  A 

common approach has been to use strong oxidation, followed by an acid treatment.  The 

oxidation step removes non-nanotube carbon and exposes the metal catalysts by 

removing its potential carbon coating.  The drawback in this step process is that CNTs are 

lost or damaged during the oxidation process [22].       

 37



The surface decomposition of SiC substrates to produce CNT films was first 

discovered by Kusunoki et al. in 2000 [23] and has since been demonstrated by several 

other research groups ([13], [24], [25]).  Using this method, the SiC film decomposes 

under the proper conditions and the freed carbon atoms self-organize to form CNT.  The 

process is catalyzed by an oxidation reaction with residual oxygen gas in the chamber 

used for growth ([24], [25], [13]).   

Specific conditions for producing CNTs through the decomposition of SiC 

substrates involve the following attributes: temperature of 1700oC for half an hour or 

longer; and vacuum pressures of 10-3 to 10-5 Torr ([13], [26]).  The key issue in preparing 

CNTs on SiC is controlling the oxidation process, such as not to allow solid SiO2 to form 

on the SiC surface.  This control of the active oxidation process is ensured by fabricating 

under the previously listed temperature and vacuum pressure growth attributes.  An in-

depth discussion of the interaction of oxygen with SiC surfaces at high temperatures is 

given by Song et al. in [27]. 

The growth results presented by Kusunoki et al. [26] showed that CNT growth 

was limited to the C-face of the SiC.  In the work presented by Nagano et al. [24] and 

Mitchel et al. [13], however, CNT growth was observed on both the Si- and C-faces.  The 

primary difference in the growth methods used by the two research groups was the 

surface cleaning and preparation techniques used [24].   

Figure 16 (a) shows the highly aligned nature of the CNTs formed by Kusunoki et 

al. [28] through the decomposition of SiC.  Both samples shown in Figure 16 were 

produced at 1700oC and 1 x 10-4 Torr for half an hour.  Figure 16(b) shows the inability 

of Kusunoki and coworkers to produce CNTs on the Si-face of SiC.   
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Figure 16. (a) Cross sectional TEM image of a CNT film grown on the C-face of SiC, 
and (b) graphitic layers that formed on the Si-face of SiC during growth [28]. 

 

The chemical reaction resulting in CNT formation is given by (2.30), (2.31), and 

(2.32) [24].  The oxygen gas acting as a catalyst to the chemical reaction is purported to 

be residual to the vacuum chamber, thereby making the level of oxygen content in the 

chamber during growth unknown.     

  (2.30) SiC(s)  Si(g)  + C(s)→ ↑

and/or 

  (2.31) 2SiC(s) + ½ O (g)  SiO(g)  + C(s)→ ↑

and/or  

  (2.32) SiC(s) + CO(g)  SiO(g)  + 2C(s)→ ↑

 The only application of CNT films fabricated through the decomposition of SiC is 

found in [29], by Ito et al. (co-written with Dr. Kusunoki).  The paper investigates the 

field emission characteristics of the CNT film grown with varied parameters.  

Specifically, the field emission properties of opened and closed CNTs were compared, 

and the surface density of CNTs was varied.   
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 For their study, SiC samples were heated at 1700oC for varied lengths of time (0.5 

– 10 Hours), under two vacuum conditions (3.75 x 10-2 Torr, and 7.5 x 10-5 Torr) [29].  

To open the tubes, they were simply heated in air at 500 – 700oC for approximately 20-

minutes.  Ito et al. found that the density of the CNTs formed at 7.5 x 10-5 Torr was 

approximately 30 billion CNTs per mm2.  Perceiving that this high density would be too 

dense and lead to high shielding effects between CNTs and poor field emission 

characteristics, Ito et al. decomposed SiC at 3.75 x 10-2 Torr, finding that the surface 

concentration was reduced to 10 billion CNTs per mm2.  AFM analysis confirmed the 

increased surface roughness of the sample grown at 3.75 x 10-2 Torr.  It is assumed that 

TEM images were used to estimate the CNT surface density, although they did not 

specifically note how the value was determined.  Ito et al. reported that field emission 

performance improved due to the increased level of surface roughness, and likewise, 

reduced electric field screening effects.   

 Through the investigation of the CNT films fabricated at varied growth times, Ito 

et al. found that the longer the heating time, the lower the surface resistance of the film 

[29].  The surface resistance of the CNT film heated for 10-hours decreased by a factor of 

ten compared with the sample heated for 0.5-hours.  Ito et al. concluded their work by 

stating that the lowest threshold voltage was achieved by controlling the density of the 

CNTs, forming a conductive layer through long growth times, and opening the CNT caps.  

Figure 17 illustrates the improved field emission characteristics of the CNT film after the 

CNTs are opened [30].   
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Figure 17. Current vs. voltage field emission characteristics of a CNT film grown 
through the surface decomposition of SiC [30].  

 

2.4 Electrical Discharges in Vacuum 

Field emission is the precursor to electrical breakdown.  With this understanding, 

it is necessary to review other types of electrical discharges in vacuum in order to 

properly identify observed experimental results.   

The first area of electrical discharges is noted as pre-breakdown, and contains two 

general categories [31].  The first category consists of steady or quasi-steady currents 

emitted from sites on the cathode through field emission or thermal emission.  Field 

emission is the focus of this work, and will not be covered further in this section.  The 

second category of pre-breakdown current falls under micro-discharges.  Micro-

discharges are self-limiting bursts of current that are caused by small clumps of material 

being detached from the cathode that cross the gap to strike the anode.  Micro-discharges 

are also the result of a beam of electrons from the cathode vaporizing a small quantity of 

material on the surface of the anode.  Micro-discharges tend to be most common in 

vacuum gaps with contaminants on either the anode or cathode surfaces.   
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The observance of both types of pre-breakdown phenomena, either concurrently 

or at different voltage levels is possible [31].  Pre-breakdown currents may affect the 

system as to directly cause breakdown, or they may affect the anode and cathode surfaces 

such that subsequent breakdowns are more or less likely.  In certain high-voltage vacuum 

devices with low operating currents, pre-breakdown currents can increase to the point 

where the system’s power supply becomes overloaded, preventing proper operation even 

though breakdown has not occurred [31].   

The next area of electrical discharges involves breakdown, and contains four main 

categories of theories.  First, the ‘clump’ theory states that breakdown is initiated by a 

particle becoming detached from one electrode, crossing the inter-electrode gap, and 

impacting the other electrode with sufficient energy to trigger the power supply to sense 

an overloaded condition [31].  This theory corresponds directly to the micro-discharge 

occurrence in pre-breakdown.  Second, interaction theories assume that a chain reaction 

that involves electrons, positive ions, negative ions, and photons cause a rapid rise in pre-

breakdown current which increases until breakdown of the vacuum gap occurs [31].   

Third, cathodic theory assumes that the field emission of electrons from 

projections on the cathode causes heating and vaporization of the projections, introducing 

a supply of vapor or plasma into the inter-electrode gap sufficient to cause breakdown 

[31].  Lastly, anodic theory assumes that as the beam of electrons from the cathode 

strikes the anode, the beam heats up a small part of the anode surface to produce vapor, 

which is then ionized by the beam.  This vapor consists of material evaporated from the 

anode, or contaminants desorbed from the surface of the anode, or both [31].  Such 

contaminants are common and often exist under ultrahigh vacuum conditions [31].   
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2.5 Stability of Field Emission Currents 

The instability of observed field emission currents is discussed by several works 

found in the current literature.  Evtukh et al. [32] state that undesirable field emission 

properties, such as large current fluctuations, low-frequency noise, and some occasional 

jumping have delayed the widespread application of field emission cathodes.  The 

unavailability of highly reliable cathodes was believed to be solved with the discovery of 

CNTs; however, some works in the literature indicate that this is not the case ([32], [33]).   

Regarding semiconductor materials as field emission cathodes, unstable emission 

behavior occurs due to the presence of native oxides, adsorbed impurities, chemical 

reactions with residual gases, and field erosion of the emission tips as a result of 

bombardment with residual gas ions and overheating [32].  Unstable emission currents 

from a CNT film were reported by Bonard et al.[33], noting that a gradual degradation of 

the emission performances with time was observed.  Bonard et al. [33] reported     I – V 

characteristics acquired at different degradation stages showed a decrease in the field 

amplification factor, and SEM observations on films after emission revealed a substantial 

decrease of the CNT density.   

Figure 18 compares the degradation over time of a single-walled CNT film with 

that of a multi-walled CNT film emitter [33].  Although the y-axis values are different in 

value for the two films, they are on the same scale.  The degradation was assumed to be 

caused by the gradual destruction of the CNTs from ion bombardment by gas phase 

electron ionization or by ion desorption from the anode, both of which are induced by the 

emitted electrons.  The single-walled CNT film degrades significantly faster, and is likely 
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due to the fact that the multiple walls of the multi-walled CNTs make them more robust 

and thereby less sensitive to ion bombardment.   

Figure 19 illustrates the long-term emission stability at a constant emitted current 

of 3 mA/cm2 for a closed multi-walled CNT film [33].  From the figure, it is clear that the 

applied voltage necessary to achieve a constant emission current density increases with 

time and is not overly stable. 

 

 
Figure 18. Emission stability for a closed multi-walled CNT and a single-walled CNT 
under a constant electric field [33].  

 

 
Figure 19. Long-term emission stability at a constant emitted current (3 mA/cm) for a 
closed multi-walled CNT film [33]. 
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 Song et al. [32] observed a rather unstable field emission current from a multi-

walled CNT array, reporting a 15% fluctuation rate.  It was concluded that during the 

periods of high fluctuation, the emission is dominated by adsorbents on the CNTs.   After 

heating the sample to 400oC for approximately 40-minutes, the field emission current was 

observed to become much more stable, with the fluctuation rate dropping below 5%.  

Along with reducing the fluctuation rate, the heating step caused the turn-on electric field 

to rise from 1.4 V/μm to 1.9 V/μm.  Song et al. monitored the components of the released 

gases during the heat treatment using a mass spectrometer, and observed that the 

principal desorbed gas component was water vapor.   

 The alteration of an emission tip during field emission was noted by Zhirnov et al. 

[34], whereby after achieving a maximum current, the observed emission current dropped 

drastically (although this was not on a CNT emitter).  SEM analysis of the diamond-

coated Si emission tip following the drastic drop showed that the height of the emitter 

changed from 100 μm to 70 μm, indicating that the tip was destroyed.  Figure 20 shows 

the shift in the emission characteristics, both before and after the destruction of the tip 

structure.  This alteration in emission performance and corresponding SEM analysis 

indicating tip damage shows that the emission tip was sensitive to the high field effects.     
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Figure 20. Field emission characteristics of a diamond-coated Si emitter, before and after 
failure [34].  

 

2.6 Chapter Summary 

This chapter provided an in-depth review of the electron field emission process, 

the quantitative theory describing field emission, the current field emission studies 

regarding CNTs, the fabrication of CNTs through the surface decomposition of SiC, and 

theories regarding the electrical breakdown in vacuum.   
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Chapter 3:  Experimental Methodology 

This chapter discusses the experimental approach taken to characterize the 

emission properties of a CNT film.  The CNT growth procedures, along with the ohmic 

contact deposition steps are discussed.  The chapter also discusses the sample holding 

apparatus fabricated for testing, the details of the overall vacuum system setup, and the 

data gathering and analysis methodology.  

3.1 CNT Growth Procedures/Sample Preparation 

CNTs are grown by the process described in “Growth of Carbon Nanotubes by 

Sublimation of Silicon Carbide Substrates,” by Mitchel et al. [13], which in turn was 

adapted from the growth methods described by Kusunoki et al. discussed in section 2.3 of 

this work.   

CNT fabrication involved using commercial grade n-type SiC substrates that had 

been polished on both sides using a standard mechanical polish and solvent cleaning [13].  

Atomic force microscopy (AFM) measurements showed typical scratch marks due to 

residual polishing damage on both faces of the SiC.  Figure 21 shows a topographical 

AFM image of the Si-face of the polished SiC wafer.  The RMS value shown in Figure 

21 is a measure of surface roughness (root-mean-square roughness), and is discussed in 

section 4.3.  The SiC samples were then annealed at 1700oC in a graphite resistance 

furnace (Oxy-Gon Industries, Inc, Epsom, NH) under a moderate vacuum (10-3 - 10-5 

Torr), forming a dense CNT film on the surface of the SiC.  The fabrication steps were 

carried out using AFRL/MLPS’s equipment and assistance.  Detailed fabrication steps 

can be found in Appendix B.   
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RMS 0.43 nm
   

Figure 21. Atomic force microscopy image of the Si-face of the polished SiC wafer, 
showing typical scratch marks due to residual polishing damage.   

 
 

Scanning electron microscope (SEM) images of the CNT film grown using the 

methods discussed are shown in Figure 22.  The CNT film shown in the images was 

grown on the C-face of the SiC sample for 5-hours at 1700oC and 10-5 Torr vacuum 

pressure, and was imaged by cleaving the sample to create a clean edge.  The scans were 

taken with the sample placed at a 45o angle relative to the electron beam of the SEM.   

Cross-sectional TEM images of the CNT films are shown in Figure 23 (courtesy of Dr. 

John Boeckl, AFRL/MLPS).  The layer seen on top of the CNT film is platinum, which 

was deposited to protect the CNT surface during ion milling steps used to prepare the 

TEM samples.   
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Figure 22. SEM image of CNTs grown on the C-face of SiC, 45o stage tilt: 50,000x 
magnification (left), and 100,000x magnification (right). 
 

      

Growth 
Direction

Figure 23. TEM cross-sectional image: (left) C-face – 1 hour decomposition time, and 
(right) Si-face – 2 hour decomposition time.   

 

In a further attempt to characterize the emission surface, plan-view SEM images 

of the CNT samples were taken.  Figure 24 shows the plan view of a C-face sample 

grown for 1-hour at 1700oC and 10-5 Torr vacuum conditions.  The image is inconclusive 

in regards to describing the surface topology of the sample.  From the image, it is difficult 

to determine whether the contrasting circles on the SEM scan indicate CNT tips or are 

merely amorphous carbon nano-clusters.  The large lighter gray areas are unidentifiable, 
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but are assumed to be layers of either: adsorbents such as oxygen that adhered to the 

surface following the sample’s removal from the vacuum furnace; or graphitic layers that 

formed during either the temperature ramp-up or ramp-down process in the vacuum 

furnace. 

 

 
Figure 24. Plan-view SEM image of a CNT film grown on the C-face of SiC at 200,000x 
magnification.  

 

For testing purposes, CNT growth procedures were varied in anneal time and 

chamber pressure.  Post-growth steps were taken in an attempt to open the CNTs.  The 

purpose of these variations was to investigate the effects chamber pressure and anneal 

time had on surface topology, and to determine the growth attributes that resulted in the 

most favorable field emission surface.  Regarding growth times, the primary question 

resides in whether long growth times produce a dense CNT array with many CNT 
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‘outcroppings.’  Here, the term ‘outcroppings’ is used to describe individual CNTs that 

may grow taller than the rest on the sample, thereby reducing electric field screening 

effects and improving the surface’s field emission characteristics.  

The specific CNT growth parameters used are discussed in detail in section 3.5. 

3.2 Deposition of an Ohmic Contact Layer 

Due to the experimental setup chosen, shown in Figure 25, an ohmic contact was 

deposited on the backside of the SiC/CNT sample.  This configuration ensured that the 

substrate’s entire surface was capable of emitting electrons and that there were no points 

of interference caused by an electrical connection to the cathode. 
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Figure 25. Illustration of the experimental setup showing the need for the ohmic contact. 

 

As reported by Lu et al. [35], many materials, including metals, silicides, 

carbides, nitrides, and borides have been examined for their formation of ohmic contacts 

on SiC.  The type of deposited material does not seem to be the most important factor in 

the formation of the contact; however, the primary factors are reported to be the use of a 
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highly doped SiC substrate (upper 1018 and 1019 cm-3) and a thermal annealing step in 

vacuum at approximately 1000oC or above [35].     

Based on two papers written by Lu et al. ([36], [35]), an ohmic contact on the 

backside of the SiC sample was initially fabricated by depositing a 200 nm thick layer of 

nickel (Ni) on the SiC using an electron-beam evaporation system.  The high evaporation 

temperature was assumed to suffice as the thermal annealing step.  The deposition was 

carried out by first cleaning the sample with acetone, methanol, and a buffered oxide etch 

(weak hydrofluoric acid solution) to remove any oxide layers that may have formed on 

the substrate.  Nickel was the metal chosen based on its common use and favorable 

performance in forming ohmic contacts on n-type SiC [36].  The results of the ohmic 

contact deposition were successful, as current versus voltage data showed a linear 

relationship indicating an ohmic contact was achieved.  Figure 26 shows the CNT after 

the Ni contacts had been deposited on the backside of sample.  Although the 

metallization process did not appear to harm the CNTs, this approach was not used to 

prepare samples for testing due to the potential of unknown affects on the CNT film.   

In order to alleviate concerns that the metallization steps performed after CNT-

growth steps may damage the CNT film, the ohmic contact was fabricated by depositing 

a 200 nm thick layer of tantalum (Ta) on the backside of the samples prior to surface 

decomposition in the graphite resistance furnace.  The transfer length method (TLM) was 

used for assessing the Ta contact quality, and is discussed in section 4.1.  Ta was chosen 

based on its extremely high melting point (3290oC), and the notion that the type of metal 

used for the formation of ohmic contacts on SiC is not the central concern.  Because the 
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Ta was deposited prior to CNT fabrication, the 1700oC growth process was assumed to 

be a suitable ohmic contact annealing step.   

 

 
Figure 26. SEM image of a CNT film after Ni had been deposited on the backside of the 
sample.   

 

3.3 Sample Holding Apparatus 

Based on the experimental setup shown in Figure 25, a sample holding apparatus 

was fabricated, with the design shown in Figure 27.  Note that in Figure 27 (b), the 

original acrylic sample holder arms were replaced after they broke due to fatigue (after 

testing all samples).  Electrical crimp connecters were successfully used to firmly hold 

the copper anode in place on top of the SiC/CNT sample. 

The test platform was electrically isolated from the stainless steel vacuum 

chamber by constructing the test platform on an acrylic plastic plate.  As discussed in 
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section 3.2, the electrical contact to the SiC/CNT sample was achieved through an ohmic 

contact placed on its backside, thereby necessitating the sample to be placed on a 

conducting plate.  To achieve this, a polished copper plate that was larger than the sample 

being tested was attached to the acrylic plastic plate that formed the base of the sample 

holder apparatus.  The negative lead from the high-voltage supply was attached to the 

copper plate off to the side of the sample, ensuring that the anode and cathode were kept 

parallel to one another. 

 

(a)   

(b)   

Figure 27. Sample holding apparatus fabricated for use in the vacuum chamber: (a) angle 
view, (b) side view.  In (b), the original acrylic sample holder arms were replaced after 
they broke due to fatigue (after testing all samples).   
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A 100 μm thick Teflon® sheet was placed on top of the SiC/CNT sample such that 

the sample was completely covered by the Teflon®.  In order to create a known area for 

field emission to occur, a 1/16” circular hole in the Teflon® was made using a punch tool.  

Figure 28 illustrates the circularity of the hole created using the 1/16” punch tool, 

allowing for a confident calculation of the hole’s area based on the measured diameter 

using the SEM scale bar.  Although the 1/16” inch diameter punch translates into a 

1.5875 mm diameter hole, the effective diameter was measured to be 1.536 mm using the 

SEM scale bar.  The material within the punched circle is the SEM sample holder’s 

adhesive material.  Teflon® was chosen based on its dielectric strength of 60 x 106 V/m.  

At a thickness of 100 μm, the Teflon® spacer is capable of withstanding an applied 

voltage of 6,000 VDC.   

 

 
Figure 28. SEM image of the 1/16” hole made using the punch tool. 
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 Although the hole made by the 1/16” punch appears to be rough at its edges, this 

roughness was considered acceptable due to optical microscope analysis of several holes 

made using the punch.  Other methods used to try and make a suitable hole in the Teflon® 

sheet involved using a sheet metal punch and a drill.  Regarding the sheet metal punch, 

the Teflon® material was not punctured, but was stretched.  The drill, made specifically 

using a 1/16” bit while the Teflon® sheet was clamped tightly between two wood blocks, 

resulted in a highly non-circular hole, and is shown in Figure 29. 

 

 
Figure 29. Non-circular hole in the Teflon® film made using a 1/16” drill bit (5x 
magnification). 

 

A highly polished copper anode was placed on top of the Teflon® spacer, 

completely covering the hole in the spacer.  The anode was polished using 4000 grit SiC 

sandpaper, along with a metal polish.  The surface smoothness was verified using the a 

Zygo profilometer system, capable of creating a topographical map of micro-scale 

surface.  Figure 30 (a) illustrates an optical microscope image, taken using 150x 

magnification, of the anode surface.  Although under this level of magnification the 
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surface appears to be highly scratched, the profile given in Figure 30 (b) shows that the 

largest peak-to-valley displacement is 1.91 μm.  To further support the acceptable 

smoothness of the copper anode, the profile given in Figure 30 (c) shows that the typical 

scratch on the anode surface is sub-micron, measuring approximately 350 nm.  The 

apparent scratches in the anode can be considered negligible with respect to the anode-to-

cathode separation distance, which as intended is dominated by the Teflon® spacer.   

The Teflon® spacer must be large enough to cover the entire anode, ensuring that 

no unexpected field emission paths exist between the copper base and the anode.  The 

positive lead of the high power voltage supply was connected to the top side of the 

copper anode.  In order to secure the copper anode in place, two plastic arms, as shown in 

Figure 27 (a), clamp down on the anode.  

Following fabrication, the components of the sample holding apparatus were 

thoroughly cleaned by means of an acetone soak, followed by an ultrasonic bath in 

methanol to remove residual oils and greases, to make the device vacuum ready.  The 

dimensions of the sample holding apparatus can be found in Appendix B.  
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(a)   
 

(b)   

(c)    
Figure 30. Images and data describing the surface smoothness of the copper anode: (a) 
optical microscope image showing minor scratch marks, (b) Zygo image of a portion of 
the anode showing a maximum peak to valley reading of 1913 nm, and (c) single profile 
along the area analyzed in (b).   
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3.4 Overall Vacuum System Setup 

The experimental setup was created using various components owned by 

AFIT/ENG, borrowed from AFIT/ENP and AFRL/MLPS, and purchased from 

commercial suppliers.  The overall vacuum system is shown in Figure 31.   

 

 
Figure 31. Image of the experimental vacuum system setup.   

 

A Drytel 31 pumping system was used to provide a rough vacuum to the system.  

The Drytel 31 is a dry pumping unit incorporating an Alcatel molecular drag pump, 

which is designed to be used as a stand-alone, table top system for easy integration and is 

capable of reaching 7.5 x 10-6 Torr.  The vacuum pressure necessary for the field 

emission test (a minimum of 1.0 x 10-6 Torr) was achieved using an oil-lubricated 

Leybold TURBOVAC 150 CSV turbomolecular pump.  The turbomolecular pump was 

water-cooled using a Neslab RTE 110 chiller/recirculation unit.  In order to maximize the 

effectiveness of the turbomolecular pump, it was situated directly beneath the vacuum 
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chamber.  The initial setup connected the turbomolecular pump to the vacuum chamber 

with a 24-inch braided stainless steel vacuum hose.  A remarkable difference was seen in 

the ultimate vacuum pressure achieved when the vacuum hose was removed and the 

chamber was placed directly above the turbomolecular pump (~6.0 x 10-6 Torr to ~1 x  

10-9 Torr). 

The high voltage needed for testing was supplied using a Stanford Research 

Systems, Inc. High Voltage Supply model PS350, capable of supplying up to 5000 VDC.  

The field emission current was measured using an Agilent 34410A Multi-meter capable 

of monitoring current to 10 nA accuracy and GPIB (IEEE 488) bus compatible.  

Electrical connections were passed into the vacuum chamber using a Miniature High 

Voltage (MHV) coaxial feed-through with a grounded shield, manufactured by the Kurt 

J. Lesker Company.  

More detailed illustrations, and a complete list of the equipment used, are found 

in Appendix B.   

3.5 Data Gathering/Interpretation Methodology 

The growth parameters of the samples tested are listed in Table 4.  The primary 

focus of each sample’s testing was its turn-on voltage, threshold voltage, maximum 

current density, and emission current stability.  CNT film growth at 10-3 Torr vacuum 

pressure was accomplished by operating the graphite heat resistance furnace with only 

the roughing pump pulling on the vacuum furnace chamber.  The purpose behind this 

growth variation was to fabricate a rougher CNT film to decrease the electric field 

screening effects between neighboring CNTs, and thereby improve the films’ field 
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emission properties.  The low pressure growth was motivated by a work from Ito et al. 

[29], which stated that CNT films grown through the surface decomposition of SiC under 

poorer vacuum conditions were rougher than films grown under stronger vacuums.   

Table 4.  CNT Film Growth Parameters.   

Time 
(hours) 

Pressure 
(Torr) SiC Face Temperature 

(oC) 

Post Processing: Anneal 
Time/Temperature 

(minutes / oC) 

0.5 10-5 Si 1700 N/A 

0.5 10-5 Si 1700 10 / 620 

0.5 10-3 Si 1700 N/A 

0.5 10-3 Si 1700 10 / 620 

3 10-5 Si 1700 N/A 

3 10-5 Si 1700 10 / 620 

3 10-3 Si 1700 N/A 

3 10-3 Si 1700 10 / 620 

5 10-5 Si 1700 N/A 

 

Data was gathered in a manner consistent with field emission tests discussed in 

section 2.2.  The applied anode voltage was swept through a range of voltages necessary 

to achieve emission current densities of 10 μA/cm2 and 10 mA/cm2.  These current 

density values were chosen due to their literature reference as figures-of-merit 

encountered in flat panel display technologies, where 10 μA/cm2 and 10 mA/cm2 are 

regarded as the current densities occurring at the turn-on electric field (Eto) and threshold 

electric field (Ethr), respectively [1].   

The voltage sweeping process started at 100 VDC (1 V/μm), with 25 VDC (0.25 

V/μm) step sizes.  After currents in the tens of micro-amp range were measured by the 
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multi-meter, the step sizes were reduced to 20, or 10 VDC.  For each voltage step, the 

current measured through the system by the multi-meter was recorded over 15-second 

intervals using the multi-meter’s GPIB interface and a PC.  From the recorded time-

interval data, the average, median, maximum, and minimum current densities were 

calculated.  The current stability over time was analyzed using this time-interval data by 

calculating the standard deviation of the current values collected.   

The applied voltage was increased until the internal protection mechanism of the 

high voltage power supply sensed a current overload and tripped, causing it to remove the 

applied voltage and reset itself.  The internal protection mechanism of the high voltage 

supply resets itself when a current of 5.3 amps is drawn.  The 5.3 amps necessary to 

overload the supply is not a DC current, but is a transient value resulting from a 

momentary overload from the cathode to the anode that causes a large energy transfer 

between the two.  The cause and result of the power supply current overloading (also 

referred to as tripping) are discussed in section 4.3.  After the power supply would trip, 

the voltage was reapplied starting at 100 VDC (1 V/μm) and the ramping cycle restarted.  

The procedure was repeated on each sample until current was no longer observed either: 

prior to the tripping of the power supply; or overall (up to the power supply’s maximum 

of 50 V/μm). 

The test results have been normalized into applied electric field values (in V/μm) 

for comparison with values found in the literature.  This normalization was done by 

dividing the applied voltage by 100 because of the 100 μm thick Teflon® sheet separating 

the CNT film from the copper anode.  The recorded current was manipulated into a 
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current density by dividing it by the field emission area, yielding a normalized value 

comparable with values found in the literature as well.  

After collecting an adequate number of current density versus applied electric 

field data points for each sample, the data was analyzed using the F-N model, given by 

plotting  ln(I/V2)  versus  1/V.  In the F-N plot,  V  represents the applied voltage (VDC) 

or applied electric field (V/μm), and  I  represents the emission current density (A/cm2).  

The plotted curve will be linear if the current is the result of field emission.     

The numerical analysis approach mirrored the approach taken by both Manohara 

et al. [19] and Li et al. [20], which was presented in section 2.2.  Equations (3.1) and 

(3.2) restate equations (2.27) and (2.29), respectively. In equation (3.1),  a  and  b  are 

constants extracted from the F-N plot.  In equation (3.2),  β   represents the field 

enhancement factor,  φ   represents the emitter’s work function in eV, and  d  is the gap 

between the anode and CNT tip in μm [19].   

 2ln( ) ln( ) bI
VV

a= −  (3.1) 

 9 3/2
6.87 10 ( db φ

β )⋅×=  (3.2) 

 By measuring the slope of the F-N plot, the constant b  was calculated [19].  Next, 

knowing the value of  b , the field enhancement factor for a given sample was calculated 

[19].  Lastly, the values of Eto and Ethr were compared with values given by Bonard et 

al.[1] shown in section 2.2.  

 In summary, testing focused on measuring Eto and Ethr , the field enhancement 

factor, and the current stability over time for each of the samples tested.   
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3.6 Chapter Summary 

 This chapter covered the experimental approach taken to characterize the 

emission properties of a CNT film.  The chapter discussed CNT growth and sample 

preparation procedures, the sample holding apparatus fabricated for testing, and the 

vacuum system setup used for testing.
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Chapter 4:  Results and Analysis 

The intent of this chapter is to discuss the results collected during the 

experimental portion of this thesis.  First, the results of the Transfer Length Method 

(TLM) analysis of the tantalum (Ta) ohmic contact deposited on the backside of the SiC 

wafers are presented.  Next, the results of the post-growth annealing used to open the 

CNTs are presented.  Third, an observational analysis of the field emission characteristics 

of each CNT film type is presented.  Lastly, the field emission properties of the CNT 

films tested are compared with one another, highlighting apparent trends and discussing 

inadequacies in the data collected and experimental methodology.  

4.1 Measuring Contact Resistance Using the Transfer Length Method 

The Transfer Length Method (TLM) was used to assess the ohmic contact 

resistivity between the 200 nm thick Ta layer and SiC wafer.  The Ta deposition step was 

carried out prior to CNT fabrication to avoid post-growth damage to the CNTs during 

metal deposition and to use the 1700oC CNT growth temperature as the thermal 

annealing required for ohmic contacts.  

TLM involves collecting current versus voltage data at varied ohmic contact pad 

separation distances on a sample [37].  An example of the TLM pattern used is given in 

Figure 32, showing Ta pads of the same size spaced at varied distances from one another.   

The total resistance between any two pads of the TLM pattern is taken as the 

series combination of three resistive elements: a metal to semiconductor contact, a 

channel through the semiconductor connecting the two pads, and a contact from the 

semiconductor to metal.  Because the pad sizes of the TLM pattern are designed to be 
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equal, and knowing that by definition the ohmic contact resistivity is the same for both 

polarities (from Ta to SiC and for SiC to Ta), the series combination of the three elements 

can be reduced to: 2Rpad + Rsemi [37].  Although Rsemi can be calculated both 

experimentally and theoretically, it will not be discussed further as the focus of the 

section is on evaluating the ohmic contact’s resistivity.  

 

 
Figure 32. SEM image of the TLM pattern.   

 

Figure 33 illustrates current versus voltage (I vs. V) curves for various pad 

separation distances on a sample that had been annealed at 1700oC during a 5-hour CNT 

growth.  The linearity of the I vs. V curves indicates that the contacts are ohmic, and the 

reciprocal of the slope for each individual curve is the total resistance of the three 

resistive element circuit at that separation distance.  In Figure 33, pairs 1 through 6 
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correspond to increasing pad separation distances, and their respective decreasing slopes 

indicate that as the pad separation increases, the resistance between them also increases.   
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Figure 33. TLM data giving I vs. V curves for various pad separation distances (5-hour 
anneal at 1700oC and 10-5 Torr).   

 

 By extracting the slopes of the I vs. V curves shown in Figure 33, taking their 

reciprocals, and matching this data with the corresponding pad separation distances, a 

plot is generated allowing for the calculation of 2Rpad (Figure 34).  2Rpad is determined by 

extrapolating the data such that the pad separation value goes to 0 μm.  At this point, 

Rsemi is assumed to be removed from the three element system connecting the two pads 

and the resistance value remaining is entirely due to the metal-to-semiconductor contact 

resistance [38]. 
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 In Figure 34, the six data points and the least squares line fitting the collected data 

are plotted.  From the figure, the 2Rpad value was determined to be 21.1 Ω by 

extrapolating the least squares fit line so the pad separation distance equaled zero.  Rpad 

was then calculated to be 10.55 Ω, and knowing that the TLM pad area was 5.0 x 10-5 

cm2, the contact resistance per unit area was calculated to be 5.275 x 10-4 Ω-cm2 [38].  

Assuming that the average SiC/CNT test sample is 1 cm2, then the total resistance 

between the Ta layer and the SiC substrate is a mere 5.275 x 10-4 Ω.  Assuming the peak 

emission current expected is in the range of 0.20 mADC, the peak voltage drop across the 

ohmic contact is calculated to be 1.055 x 10-7 VDC.  Using the same approach, the peak 

power dissipation across the ohmic contact can be calculated to be 21.1 pW.  Both the 

peak voltage drop and power dissipation across the ohmic contact are small enough to 

have little effect on the function of the overall system.   
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Figure 34. TLM data giving measured resistance between pads versus pad separation and 
the least squares fit line to the data (5-hour anneal at 1700oC and 10-5 Torr).   
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Proof that the 1700oC CNT fabrication step fulfills the annealing requirement in 

ohmic contact generation is shown by the I vs. V curve taken across two TLM pads on a 

non-annealed sample in Figure 35.  The non-linearity of the curve shows that the contact 

is not ohmic, as its shape indicates more of a Schottky-type contact.   
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Figure 35. TLM data giving I vs. V curve for a non-annealed sample.  

  

 To ensure that a 5-hour anneal time was not necessary to form the ohmic contact 

between the Ta and SiC, a SiC sample with a Ta TLM pattern on its C-face was annealed 

at 1700oC during a 0.5-hour CNT growth.  Figure 36 shows the corresponding I vs. V 

curves for various pad separation distances, with each curve’s linearity indicating that the 

contacts are ohmic.  Figure 37 shows the measured resistance between contacts plotted 

against their respective separation distances, as well as the least squares fit to the data.   
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Figure 36. TLM data giving I vs. V curves for various pad separation distances (0.5-hour 
anneal at 1700oC and 10-3 Torr).   

 

From Figure 37, showing the data points and the least squares line fitting the 

collected data, the extrapolated 2Rpad value was determined to be 10.7 Ω.  Rpad was then 

calculated to be 5.35 Ω, and knowing that the TLM pad area was 5.0 x 10-5 cm2, the 

contact resistance was calculated to be 2.675 x 10-4 Ω-cm2 (compared to 5.275 x 10-4 Ω-

cm2 for the 5-hour anneal sample).  Therefore, the contact resistance of the 0.5-hour 

sample is approximately one half that of the 5-hour annealed sample.   

The initial assumption was that a longer annealing time would result in a lower 

contact resistance, as more Ta atoms could diffuse into the semiconductor material.  

Experimental results disproved this assumption, allowing for the conclusion that the 5-

hour anneal is beyond the optimal ohmic contact anneal time.  Upon analyzing the post-

anneal Ta contact patterns using an optical microscope, the 5-hour anneal sample’s 
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contacts appear very brittle and are easily damaged and cracked-off the substrate by the 

probe tips used for the I vs. V analysis.  It is believed that the long anneal time caused the 

TLM contact pads to separate from the SiC substrate at the edges.  The cause for this 

separation is unknown, as the melting point for Ta is 3290oC, and CNTs did not appear to 

have formed under the contact pads.   
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Figure 37. TLM data giving measured resistance between pads versus pad separation and 
the least squares fit to the measured data (0.5-hour anneal at 1700oC and 10-3 Torr).   

 

Figure 38 shows images of a non-annealed, 0.5-hour annealed, and 5-hour 

annealed sample.  The 5-hour annealed sample appears to have the most damage from the 

annealing, regardless of the fact that the 1700oC anneal temperature is well below the 

3290oC melting point of Ta.  The non-annealed sample’s substrate appears to be out of 

focus in the image; however, this is because the SiC substrate is semitransparent prior to 

 71



CNT growth.  Figure 39 shows the damage caused by contacting the TLM pattern pads 

with the probe tips while taking I vs. V curves on the sample.  This damage did not occur 

on either the non-annealed or 0.5-hour annealed samples during I vs. V analysis.   

 

(a)      (b)  

(c)   
Figure 38. Optical microscope images of the TLM pattern: (a) non-annealed, (b) 0.5-hour 
anneal at 1700oC and 10-3 Torr, and (c) 5-hour anneal at 1700oC and 10-5 Torr (10x 
magnification in each image). 
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Figure 39. TLM sample after a 5-hour anneal at 1700oC and 10-5 Torr showing damage 
caused by the probe tip (20x magnification).  

 

4.2 Post Fabrication Processing of the Carbon Nanotube Films 

According to Kung et al. [21] and Ito et al. [29], a CNT film’s field emission 

characteristics can be enhanced by opening the ends of the CNTs.  Specifically, Kung et 

al. found that by annealing a CNT film at 400oC for 20- and 25-minutes in oxygen (O2), 

the turn-on electric field decreased from 0.8 to 0.6 V/μm.  TEM work by Kung et al. 

showed that the ends of many CNTs were opened or partially opened after the O2 

annealing process.  It was also found by Kung et al. that annealing under the presence of 

O2 beyond an optimal measure of time causes damage along the CNT walls, resulting in 

decreased emission currents.  Ito et al. demonstrated that by annealing CNT films (at 

620oC for 20-minutes under the presence of O2) grown via the decomposition of SiC 

substrates produced similar tube-opening results that led to improved field emission 

characteristics. 
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For the purpose of this thesis, fabricated CNT films were opened using the 

approach described by Ito et al.  Initial work involved annealing both Si- and C-face 

grown CNTs (1-hour growth time in the Oxy-Gon furnace, at 1700oC) for 20-minutes at 

620oC in a tube furnace with O2 flowing.  SEM analysis revealed that after annealing the 

samples, the CNTs were completely removed from their surfaces.  Figures 40 through 45 

illustrate before and after SEM images of the SiC/CNT surface.  From the post-anneal 

SEM images, it is noted that the surface decomposition process dramatically alters the 

surface morphology of the SiC substrate.  Looking closely at the post-anneal plan-view 

SEM scans, tightly packed circular rings on the substrate’s surface are observed.  These 

circular rings are believed to be the result of the SiC substrate surface decomposition 

process which forms the CNTs, as they were not observed prior to CNT growth.   

Additional trials showed that the CNTs were completely removed from the 1-hour 

growth sample after annealing for 10-minutes at 620oC.  SEM analysis of annealing trails 

for 1- and 5-minutes at 620oC appeared to not change the CNT surface (corresponding 

SEM images can be found in Appendix C).   
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Figure 40. C-face CNTs grown at 1700oC under 10-5 Torr vacuum for 1-hour, pre-anneal, 
30o tilt, 80,000x magnification.   

 
 

 
Figure 41. C-face CNTs grown at 1700oC under 10-5 Torr vacuum for 1-hour, after a 10-
minute anneal at 620oC in flowing O2, 30o tilt, 80,000x magnification.   
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Figure 42. C-face CNTs grown at 1700oC under 10-5 Torr vacuum for 1-hour, after a 10-
minute anneal at 620oC in flowing O2, plan-view, 100,000x magnification. 

 

 
Figure 43. Si-face CNTs grown at 1700oC under 10-5 Torr vacuum for 1-hour, pre-
anneal, 30o tilt, 80,000x magnification.   
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Figure 44. Si-face CNTs grown at 1700oC under 10-5 Torr vacuum for 1-hour, after a 10-
minute anneal at 620oC in flowing O2, plan-view, 80,000x magnification. 

 

 
Figure 45. C-face, SiC surface prior to CNT growth, plan-view, 80,000x magnification. 
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4.3 Field Emission Analysis 

 This section discusses the field emission characteristics of the samples tested.  

Testing began by cleaning the samples with an acetone and methanol rinse, and blowing 

them dry with N2, before insertion into the sample holding apparatus.  Testing involved 

ramping the applied electric field from 1.00 V/μm to an electric field high enough to 

cause the power supply to sense a current overload and trip itself off (referred to as 

electrical breakdown).  A primary trip of the high voltage power supply indicates that a 

current spike reaching 5.3 ADC was registered by the power supply.  At electric field 

steps where the multi-meter registered a current through the device, the current was 

recorded for a finite time period (typically two data points per second for 15-seconds) 

using the GPIB interface and Agilent Multi-link software Microsoft Excel plug-in.  From 

the recorded time-interval data, the average, median, maximum, and minimum current 

densities were calculated.  The current stability over time was analyzed using this time-

interval data by calculating the standard deviation of the data sets collected.   

After electrical breakdown occurred for a sample, the electric field ramping 

process was repeated in order to determine if the occurrence of electrical breakdown 

altered the CNT film’s field emission properties in any way.  The electric field ramping 

process was repeated for each sample until current was no longer observed either: prior to 

the tripping of the power supply; or overall (up to the power supply’s maximum of 50 

V/μm).  Successive electric field rampings are referred to as ‘runs’ and are denoted as 

‘run 1’, ‘run 2’, ‘run 3’, etc.  Initial electric field rampings that did not result in 

measurable currents were not included in this nomenclature.   

 

 78



4.3.1 Data from Individual Samples Tested 

0.5-Hour Growth, 10-5 Torr, 1700oC, No Post-Growth Annealing: 

 Testing of the CNT film grown at 1700oC under 10-5 Torr vacuum pressure for 

0.5-hours with no post-growth annealing was performed at a vacuum pressure of 4.7 x  

10-7 Torr.  Initially, no recordable current was observed in the system prior to a trip of the 

high voltage power supply at 13.0 V/μm.  A primary trip of the high voltage power 

supply indicates a current spike reaching 5.3 ADC was registered by the power supply.  

Detailed analysis regarding the cause of primary voltage trips will be discussed later.   

 Following the initial primary trip of the voltage supply, a current was observed in 

the system beginning at 3.00 V/μm (denoted as run 1).  Figure 46 shows the data 

collected for the six sequential runs that followed the initial trip.  The figure shows that 

after the first run (run 1), increasing the applied electric field had a much smaller impact 

on the current produced in the system.  The first run showed excellent field emission 

characteristics, with a low turn-on electric field (54.8 μA/cm2 at 3.0 V/μm) and high 

maximum current density (4.25 mA/cm2 at 6.7 V/μm).  Refer to section 2.2 to see 

corresponding field emission characteristics of field emitters found in the literature.  How 

well these values compare with those found in the literature and with other samples tested 

will be discussed later in this section.   

 To determine if the current through the system was the result of field emission, 

the collected data was plotted in F-N format.  F-N plot format involves plotting 1/V vs. 

ln(I/V2), and a linear relationship is indicative of field emission, as opposed to thermionic 

emission or unpredictable pre-breakdown currents stemming from the ionization of 
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particles from the cathode and their subsequent impacting of the anode.  Figure 46 shows 

the F-N plot of the data collected from runs 1 through 6.   
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Figure 46. Field emission data for the CNT film grown at 1700oC under 10-5 Torr 
vacuum pressure for 0.5-hours and with no post-growth annealing. 
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  The plotted F-N data for the first two runs appears linear (Figure 46), indicating 

that the recorded current for these two runs is a result of field emission.  Although 

portions of the F-N plot for runs 3 through 6 appear linear, the non-linear portions 

indicate that field emission is not the dominant cause of the recorded current.  Refer to 

Figure 14 (page 31) for an F-N plot found in the literature, and note that its 

discontinuities are similar to those seen in Figure 46 and others plotted later in this 

section.   

 Extracting the slopes of each curve using a least squares fit of the data, the field 

enhancement factor was calculated to be 5091.4, 1428.5, 1651.8, and 2107.2 (unitless) 

for runs 1 through 4, respectively.  The field enhancement factor was not calculated for 

runs 5 and 6 because the slope calculated using the least squares fit approach that was 

within reason (the value was positive as opposed to negative).  The field enhancement 

factor dropped significantly after the first run and rose from runs 2 through 4.  A high 

field enhancement factor is desirable, as it amounts to requiring lower applied electric 

fields for field emission.  It is referred to as an enhancement factor because it represents 

the amplification factor of the electric field due to local ‘outcroppings’ on the emission 

surface.  The latter portion of section 2.1 (page 20) discusses the field enhancement 

factor.   

Because the field enhancement factor is directly related to the surface topology of 

a sample, a change in its value reflects a change in the sample’s surface topology.  The 

large drop in field enhancement factor (5091 to 2107) indicates that ‘outcroppings’ were 

destroyed, leaving a smoother emission surface.  One explanation for field enhancement 
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factor’s increase from runs 2 through 4 is that the applied electric field caused the 

desorption of adsorbed ions, leaving a rougher surface behind.   

 The stability of the emission current is illustrated in Figure 47, where the 

measured current density is plotted over a 15-second time span.  The standard deviation 

of this data was 64.62 μA/cm2, while the average current density was 3,277 μA/cm2.   
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Figure 47. Stability plot for the CNT film grown at 1700oC under 10-5 Torr vacuum 
conditions for 0.5-hours and with no post-growth annealing, 6.5 V/μm applied electric 
field. 

  

 For each voltage step on the CNT film grown at 1700oC under 10-5 Torr vacuum 

for 0.5-hours with no post-growth annealing, the average maximum deviation from the 

average current measured (for run 1 only) was 20.56%, which is relatively low 

considering this takes into account errant current spikes.  The corresponding maximum 

deviations from the average current measured for runs 2 through 6 were 28, 32, 38, 61, 

and 51%, respectively, showing that the currents were much less stable after the initial 
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run. Likewise, the standard deviation was calculated for each group of data collected at 

each voltage step.  Calculating the percentage the standard deviation (for each voltage 

step) represented with respect to the average for each voltage step, and averaging these 

values, it is seen that on average the standard deviation is a mere 12.2% of the mean 

value for each voltage step.  This calculated stability measure is further explained in the 

Comparison of Samples Tested (page 110) portion of this section.   

 The likely cause of the change in field emission characteristics after the initial run 

was visually apparent following the removal of the sample from the sample holding 

apparatus (after the sixth run).  Marks on the surfaces of both the CNT film and copper 

anode were noticeable to the naked eye, and are shown in Figure 48.   

 

(a)     (b)  
 

(c)     (d)  
Figure 48. Optical microscope images of burn marks on the copper anode: (a) 5x and (b) 
50x magnification.  Images of the burn marks on the CNT surface taken using an optical 
microscope: (c) 5x, and (d) 20x magnification. 
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The images of the burn marks on the CNT surface resembled those presented by 

Manohara et al.[19] (Figure 15, page 33), where the markings were reported to be caused 

by arcing at high electric fields and resulted in the removal of CNTs from the substrate.   

In the case of this thesis, the exact cause of the damage is unclear.  One possibility is that 

ionic impurities are desorbed from the film’s surface as its temperature increases due to 

the emission current.  At the point of arcing, either adsorbed ionic impurities on the 

surface or the CNTs themselves are ionized and destroyed, resulting in the transfer of 

enough energy to the copper anode to cause the burn marks and trip the high voltage 

supply.  Plan-view SEM analysis of the marks of the CNT film’s surface are shown in 

Figure 49.  To remove the marks on the copper anode, it was polished with 4000 grit SiC 

sandpaper and metal polish, and rinsed in both acetone and methanol before the next 

sample was tested. 

SEM analysis of the marked area on the CNT film’s surface showed a loss of 

substrate height in the field emission area when compared with areas covered by the 

Teflon® spacer.  Figure 50 shows images of an emission area damaged by the application 

of an electric field (although not from the CNT film grown at 1700oC under 10-5 Torr 

vacuum for 0.5-hours with no post-growth annealing).  The images were taken after 

cleaving the sample across the burn mark, and imaging the CNTs with the sample 45o 

relative to the electron gun.  The images show that CNTs were still discernable within the 

damaged emission area, and that in some locations the CNTs were completely destroyed.     
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 (a)  

(b)  

Figure 49. Plan-view SEM images of the burn marks on the CNT surface after six runs: 
(a) under 60x magnification showing the entire 1/16” emission area, and (b) a burn mark 
on the surface under 10,000x magnification. 
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(a)   

 

(b)  
Figure 50. SEM images of burn marks on a CNT surface after multiple runs: (a) under 
150x magnification showing a cleaved portion of the 1/16” emission area, and (b) within 
the damaged emission area under 25,000x magnification (45o stage tilt). 
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The existence of ionic impurities on the CNT surface may contribute to the 

inconsistencies noted in the field emission data plotted in Figure 46, where the emission 

current dropped at several spots while the applied voltage was increased.  The adsorbed 

ionic impurities likely decrease the work function at various spots on the emission 

surface, causing points with lower threshold fields (higher local emission currents) at 

some points on the surface.  As the ionic impurities are desorbed, the emission current 

falls until the threshold field of the residual material is reached. Here, the residual 

material is assumed to be the CNT film, but could be the SiC substrate if the CNTs have 

been ionized off the sample.  Further complicating the situation, the desorption of some 

impurities may result in reduced field screening effects on nearby CNTs or other surface 

impurities, resulting in an immediate replacement of the desorbed emission source; i.e. 

the film surface is dynamic under applied electric fields.   

One major question is how much each arcing cycle degrades the emission surface.  

For this sample, no stable currents were registered in the sample after the sixth run, even 

though SEM analysis showed that much of the emission area was still intact after all six 

runs (Figure 49 (b)). 

 
0.5-Hour Growth, 10-5 Torr, 1700oC, Annealed for 10-minutes at 620oC in flowing O2: 

 Testing of the sample was performed at a vacuum pressure of 3.7 x 10-7 Torr.  

Due to the post-growth annealing, most of the Ta on the backside of the sample appeared 

to be gone.  The removal of the Ta ohmic contact from the backside of the SiC sample 

greatly inhibits the ability of current to flow through the sample to the emission surface, 
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and reduces the likelihood of emission.  Additionally, annealing the sample appears to 

have removed many of the CNTs on the surface.   

Figure 51 shows an SEM image of the surface of a CNT film sample grown for 1-

hour under 10-5 vacuum at 1700oC that had been annealed for 10-minutes at 620oC under 

flowing O2, revealing that the entire CNT layer had been removed.  Because the CNT 

film resulting from the 0.5-hour growth time is thinner as compared to the 1-hour growth 

sample, it likely has an increased vulnerability to the post-growth annealing step and 

therefore its removal from the SiC surface is not a surprise.  The removal of the Ta is 

unusual, considering the melting point of Ta is far above the 620oC annealing 

temperature. 

   

 
Figure 51. Resultant surface from a 10-minute anneal at 620oC under flowing O2 on a 
CNT film grown for 1-hour under 10-5 vacuum at 1700oC, 25,000x magnification, SiC 
face unknown. 
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 The ramping of the applied voltage caused repeated trips of the voltage supply, as 

trips occurred at 8.50, 8.00, 9.00, 7.50, and 8.20 V/μm.  After the five trips of the power 

supply without observing any current, a current was recorded at 7.50, 7.80, 8.00, and 8.20 

V/μm steps (denoted run 1, as it was the first run to provide usable data).  The resulting 

data is plotted in Figure 52, showing a non-linear F-N plot, and a low maximum current 

density achieved.  The collected current data for run 1 was highly unstable over time, 

with large voltage spikes observed.  After the voltage supply registered a primary trip at 

the 8.20 V/μm level during run 1, no current was observed at any other voltage levels for 

subsequent runs. 

 After removing the sample from the sample holding apparatus, burn marks similar 

to those previously discussed were also noted on its substrate.   
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Figure 52. Data collected for 1 run on the CNT film grown at 1700oC under 10-5 Torr 
vacuum for 0.5-hours and annealed for 10-minutes at 620oC in flowing O2. 
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0.5-Hour Growth, 10-3 Torr, 1700oC, Annealed for 10-minutes at 620oC in flowing O2: 

Testing of the sample was performed at a vacuum pressure of 6.2 x 10-7 Torr.  The 

ramping of the applied voltage caused an initial trip of the voltage supply at 6.00 V/μm 

before any current was observed through the system.  After this initial trip, four 

consistent runs were observed (denoted as runs 1 through 4, respectively).  No current 

was measured in the system after the fourth run.  The resulting data sets for the four runs 

are plotted in Figure 53.  

As shown by the plotted field emission data, the initial run’s maximum current 

density achieved was well below the values achieved for runs 2, 3, and 4.  Run 1, and the 

initial run which did not result in a measurable current before tripping the power supply, 

are assumed to be conditioning steps resulting in the release of adsorbed impurities from 

the emission surface.  The release of adsorbents alters the surface’s field emission 

properties; however, the result of this release was unpredictable, as both increases and 

decreases in the maximum current density are observed for runs 1 through 4.   

 The overall maximum current density achieved with this sample was reasonably 

low compared to the 4.3 mA/cm2 at 6.7 V/μm on first sample discussed (run 1), 

registering 794 μA/cm2 at an applied electric field of 9.00 V/μm for the second run.  The 

turn-on voltages for each run were:  6.40 V/μm (10.8 μA/cm2), 6.20 V/μm (18.24 

μA/cm2), 6.00 V/μm (44.4 μA/cm2), and 5.50 V/μm (36.1 μA/cm2).  Applied electric 

fields for stimulating the exact turn-on current (10 μA/cm2) were not determined, as the 

lowest observed currents were not always low enough to equate to the turn-on current 

value. 
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Figure 53. Field emission data for the CNT film grown at 1700oC under 10-3 Torr 
vacuum for 0.5-hours and annealed for 10-minutes at 620oC in flowing O2. 
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Taking the slope of the collected data plotted in F-N format using a least squares 

fit, the field enhancement factor was calculated for each run to be 864.9, 903.1, 2483.4, 

and 2545.8 for runs 1, 2, 3, and 4, respectively.  The field enhancement factor increased 

with each successive run.    

The increasing field enhancement factor and decreasing turn-on voltages indicate 

that the sample’s surface became rougher with each run.  The release of adsorbents 

during each run left ‘outcroppings’ that experienced decreased field screening effects.  

With the applied electric field enhanced at the ‘outcropping’ points, the turn-on electric 

field level was decreased.   

For each voltage step on the CNT film grown at 1700oC under 10-3 Torr vacuum 

for 0.5-hours with a 10-minute anneal at 620oC under flowing O2, the average maximum 

deviation from the average current measured (for all recorded runs) was 51.8%.  

Although this value seems high, it includes errant current spikes.  The data showed that 

the maximum deviations from the average decreased under relatively high (for the 

sample) applied electric fields.  Run 3 showed the best stability using this figure of 

measure, with the average maximum deviation from the average for each voltage step 

only 35.8%.   

The standard deviation was calculated for each group of data collected at each 

voltage step.  Calculating the percentage the standard deviation (for each voltage step) 

represented with respect to the average for each voltage step, and averaging these values, 

it is seen that on average the standard deviation is 25.1% of the mean value for each 

voltage step.  This value is double the value observed for the sample grown for 0.5-hours 

under 10-5 Torr vacuum conditions at 1700o C with no post-growth annealing, which was 
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only 12.2%.  This implies that this sample demonstrated comparably less stable currents.  

Run 3 proved to be the most stable run, with the corresponding value calculated to be 

17.2%. 

As with the previous samples discussed, burn marks were noted on both the 

copper anode and SiC/CNT sample after they were removed from the sample holding 

apparatus.  Unlike all other samples tested, a dark material was noted on the side of the 

Teflon® sheet that was in contact with the CNT film.  This dark material on the Teflon® 

spacer was accompanied by what appeared to be the removal of the CNTs from the SiC 

sample.  Although SEM images were able to clarify this assumption, the top surface of 

the SiC sample appeared to be semi-transparent, indicating that the CNTs had been 

removed.  

Figure 54 shows the material on the Teflon® spacer and the corresponding SiC 

sample from which the contamination originated.  The dark tint within the 1/16th inch 

hole is due to the sheet’s shadow on the disposable lab wipe positioned below to ensure a 

clean working surface.     

 The cause of the CNT film’s adhesion to the Teflon® sheet is not known.  One 

possibility is that the CNT fabrication run did not produce a CNT film as expected, 

forming a layer of unknown attributes (graphitic or amorphous carbon layers) on the SiC 

due to abnormalities in the growth procedure.  Another possibility is that the annealing 

process damaged the CNTs enough to result in the film being poorly held to the SiC 

substrate.   
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1/16” diameter hole

     

Location of the 1/16” diameter hole

 
Figure 54. Images of the CNT film residue on the Teflon® spacer taken using a digital 
camera (left), and the corresponding CNT film taken using the optical microscope at 5x 
magnification (right). 

 

0.5-Hour Growth, 10-3 Torr, 1700oC, No Post-Growth Annealing: 

No current data was recorded for this sample.  Repeated trips of the high voltage 

power supply occurred before any data could be collected on the sample.  Field emission 

currents were observed for brief moments prior to the power supply tripping, but they 

were highly unstable and occurred before the software could be initiated to record the 

values observed on the multi-meter. 

A CNT film grown at 1700oC under 10-3 Torr vacuum pressure for 0.5-hours that 

did not undergo post-growth annealing is shown in Figure 55.  The cross-sectional view 

of the CNT film is achieved by taking a fresh cleave of the CNT/SiC sample.  The SEM 

image shows that the CNT layer did indeed form on the SiC surface, and that the film’s 

top surface is highly similar to that of films grown under 10-5 Torr vacuum conditions.  

The SEM image did not confirm that the CNT film grown under the poorer vacuum 

conditions yielded a rougher surface or formed a less dense CNT layer. 
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Figure 55. 100,000x magnification SEM image of a CNT film grown at 1700oC under 
10-3 Torr vacuum pressure for 0.5-hours that did not undergo post-growth annealing (45o 
stage tilt).   
 

3-Hour Growth, 10-5 Torr, 1700oC, No Post-Growth Annealing: 

Unlike the previous test results discussed, no conditioning was necessary to 

achieve recordable emission steps.  Four runs were observed and recorded (denoted as 

runs 1 through 4), and the resulting data is shown in Figure 56. 

The current vs. applied electric field plot changed characteristics for each run in 

Figure 56.  From run 1 to 3, the turn-on electric field increased, and the maximum current 

density decreased.  With only two voltage levels recorded for run 4, its results are not 

discussed, as there is not enough data to ascertain a trend in its performance.  The turn-on 

electric fields were measured as 5.50 V/μm (9.61 μA/cm2), 7.00 V/μm (8.98 μA/cm2), 

and 7.00 V/μm (11.71 μA/cm2), for runs 1, 2, and 3, respectively.  The maximum current 
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density of runs 1 through 3 were 600 μA/cm2 (at 9.50 V/μm), 383 μA/cm2 (at 10.00 

V/μm), and 181 μA/cm2 (at 10.00 V/μm), respectively. 
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Figure 56. Field emission data for the CNT film grown at 1700oC under 10-5 Torr 
vacuum for 3-hours and with no post-growth annealing. 
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Extracting the slope of each run plotted in F-N format, the field enhancement 

factor for runs 1 through 3 was calculated to be 1789.5, 921, and 1374.4, respectively.  

Thus, the field enhancement factor decreased after the initial run that achieved the highest 

maximum current density. 

For each voltage step on the CNT film grown at 1700oC under 10-5 Torr vacuum 

for 3-hours with a no post-growth annealing, the average maximum deviation from the 

average current measured (for all recorded runs) was 63.5%.  Although this value seems 

high, it includes errant current spikes.  The data showed that the maximum deviations 

from the average decreased under relatively high (for the sample) electric field steps.  

The standard deviation was calculated for each group of data collected at each 

voltage step.  Calculating the percentage the standard deviation (for each voltage step) 

represented with respect to the average for each voltage step, and averaging these values, 

it is seen that on average the standard deviation is 21% of the mean value for each step.   

As with the previous samples discussed, burn marks were noted on both the 

copper anode and SiC/CNT sample after they were removed from the sample holding 

apparatus. 

A CNT film grown at 1700oC under 10-5 Torr vacuum pressure for 3-hours that 

did not undergo post-growth annealing is shown in Figure 57.  The film pictured in 

Figure 57 greatly resembles the image pictured in Figure 55, making comparisons 

between their respective surface topologies and densities difficult.  An SEM image of the 

top surface of the CNT film under the same stage tilt as the image in Figure 57 is shown 

in Figure 58.  In the image, a level of surface roughness can be seen, but not quantified. 
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Figure 57. 100,000x magnification SEM image of the cross section of a CNT film grown 
at 1700oC under 10-5 Torr vacuum pressure for 3-hours that did not undergo post-growth 
annealing (45o stage tilt).   

 

 
Figure 58. 30,000x magnification SEM image of the top surface of a CNT film grown at 
1700oC under 10-5 Torr vacuum pressure for 3-hours that did not undergo post-growth 
annealing (45o stage tilt) 
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3-Hour Growth, 10-5 Torr, 1700oC, Annealed for 10-minutes at 620oC in flowing O2: 

Testing of the sample was performed at a vacuum pressure of 3.4 x 10-7 Torr.  

Initially, no current was observed in the system prior to a primary trip from the high 

voltage power supply at 5.00 V/μm.  Following the initial primary trip from the voltage 

supply, a current was observed in the system beginning at 4.60 V/μm.  After recording 

data at 4.60 V/μm, only three more electric field steps were recorded before the power 

supply tripped at 4.9 V/μm.  This run did not result in any well trended or stable data, and 

thus is not further discussed.  After this second tripping of the power supply, four 

successive runs of solid, well-trended data were collected, and are shown in Figure 59 

(denoted as runs 2 through 5, respectively; all performed on the same spot on the 

sample).   

From the plotted data, one sees that by run 5, the turn-on electric field was 

considerably higher than that of the second run.  The turn-on voltage for runs 2 through 5 

was 3.20 V/μm (16.7 μA/cm2), 3.50 V/μm (9.7 μA/cm2), 3.20 V/μm (20.6 μA/cm2), and 

5.20 V/μm (19.5 μA/cm2), respectively.  The maximum current densities for runs 2 

through 5 were 330 μA/cm2 at 4.70 V/μm, 411 μA/cm2 at 5.20 V/μm, 1762 μA/cm2 at 

5.90 V/μm, and 2117 μA/cm2 at 5.90 V/μm respectively.  Based on the plots, it is 

concluded that a form of surface conditioning occurs after each voltage run, which 

changes the surface topology and film’s field emission properties. 

By extracting the slopes of F-N curves, the field enhancement factor for runs 2 

through 5 was calculated to be 2663, 1645, 2638, and 369, respectively.  Thus, the field 

enhancement factor decreased by the final run compared to that of the initial run.  Unlike 

the previous samples, the maximum current density increased with each successive run. 
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Figure 59. Field emission data for the CNT film grown at 1700oC under 10-5 Torr 
vacuum for 3-hours and annealed for 10-minutes at 620oC in flowing O2. 
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For each voltage step on the CNT film grown at 1700oC under 10-5 Torr vacuum 

for 3-hours and annealed for 10-minutes at 620oC in flowing O2, the average maximum 

deviation from the average current measured (for all recorded runs) was 49.9%.  Run 3 

showed the best stability using this figure of measure, with the average maximum 

deviation from the average for each voltage step only 23.52%. 

As was done for the previous samples, the standard deviation was calculated for 

each group of data collected at each voltage step.  Calculating the percentage the standard 

deviation (for each voltage step) represented with respect to the average for each voltage 

step, and averaging these values, it is seen that on average the standard deviation is 

26.6% of the mean value for each voltage step.  Specifically, run 3 was the most stable 

run, with the corresponding value calculated to be 12%.    

 One major change in the emission current was recorded and is illustrated in 

Figure 60.  The average of the first portion was calculated to be 1.916 mA/cm2, while the 

average of the second portion was calculated to be 0.14 mA/cm2.  The drop in emission 

current is assumed to be due to the emission surface changing in some manner.  Because 

the alteration occurred during the application of a strong electric field (5.80 V/μm), the 

change in properties is concluded to be due to the electric field causing either the 

desorption of surface impurities or damage to the CNTs on the surface.  Because the 

current decreased, another possibility is that the applied electric field caused the 

destruction of ‘outcroppings’ on the emission surface, resulting in increased field 

screening effects between the remaining emission points.  Another assumption is that the 

desorption of surface impurities altered the work function of emission points on the 

surface, raising the fields necessary for emission and decreasing the emission current.   
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Figure 60. Stability plot, 5.80 V/μm applied to a CNT film grown at 1700oC under 10-5 
Torr vacuum for 3-hours and annealed for 10-minutes at 620oC in flowing O2. 

 

As with the previous samples discussed, burn marks were noted on both the 

copper anode and SiC/CNT sample after they were removed from the sample holding 

apparatus.  

 
3-Hour Growth, 10-3 Torr, 1700oC, No Post-Growth Annealing: 

Testing of the sample was performed at a vacuum pressure of 1.0 x 10-6 Torr.  

Initially, no current was observed in the system prior to a primary trip from the high 

voltage power supply at 8.00 V/μm.  Following the initial primary trip from the voltage 

supply, six successive runs were recorded (denoted as runs 1 through 6, respectively), 

after which no current was recorded at additional voltage steps.  The data recorded from 

the final two runs was noisy and showed no trends, and therefore was omitted from 

further analysis.  The data collected from runs 1 through 4 is shown in Figure 61.   
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Figure 61. Field emission data for the CNT film grown at 1700oC under 10-3 Torr 
vacuum for 3-hours and with no post-growth annealing. 
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From the plotted data, one sees that for each consecutive run, the slope of the 

current vs. applied electric field and the maximum current density increases.  Clearly, the 

sample’s surface is improving through what must be assumed to be the desorption of 

impurities from the emission surface. 

The turn-on voltage for runs 1 through 4 was 6.00 V/μm (37.7 μA/cm2), 6.40 

V/μm (17 μA/cm2), 6.00 V/μm (123 μA/cm2), and 6.40 V/μm (814 μA/cm2), respectively.  

Although the turn-on values for runs 3 and 4 were much higher than the desired 10 

μA/cm2 criteria, interpolation of the collected data was not successful.  The maximum 

current densities for runs 1 through 4 were 690 μA/cm2 at 10.10 V/μm, 685 μA/cm2 at 

8.80 V/μm, 2595 μA/cm2 at 8.0 V/μm, and 4709 μA/cm2 at 6.90 V/μm respectively.   

Extracting the slope of each run plotted in F-N format, the field enhancement 

factor for runs 1 through 4 was calculated to be 3027, 867, 1296, and 496, respectively.  

The field enhancement factor decreased by the final run as compared to value from the 

initial run, indicating a decrease in surface roughness. 

For each voltage step recorded for this sample, the average maximum deviation 

from the average current measured (for all recorded runs) was 48.4%.  Runs 3 and 4 

showed the best stability using this figure of measure, with the average maximum 

deviation from the average for each voltage step only 23% and 27.2%, respectively. 

The standard deviation was calculated for each group of data collected at each 

voltage step.  Calculating the percentage the standard deviation (for each voltage step) 

represents with respect to the average for each voltage step, and averaging these values, it 

is seen that on average the standard deviation is 20.5% of the mean value for each voltage 
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step.  Runs three and four were the most stable, with the corresponding values calculated 

to be 12.6% and 13.1%, respectively.     

As with the previous samples discussed, burn marks were noted on both the 

copper anode and SiC/CNT sample after they were removed from the test apparatus.  

A CNT film grown at 1700oC under 10-3 Torr vacuum pressure for 3-hours that 

did not undergo post-growth annealing is shown in Figure 62.  The SEM image shows 

that the CNT layer formed on the SiC surface, and has a top surface that is similar to that 

of films grown under 10-5 Torr vacuum conditions.  The SEM image did not confirm that 

the CNT film grown under the poorer vacuum conditions yielded a rougher surface or 

that a less dense CNT array formed. 

 

 
Figure 62. 50,000x magnification SEM image of a CNT film grown at 1700oC under 10-3 
Torr vacuum pressure for 3-hours that did not undergo post-growth annealing (45o stage 
tilt).   
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3-Hour Growth, 10-3 Torr, 1700oC, Annealed for 10-minutes at 620oC in flowing O2: 

Testing of the sample was performed at a vacuum pressure of 6.4 x 10-7 Torr.  

Initially, no current was observed in the system prior to primary trips of the power supply 

at 30.00 V/μm, 38.00 V/μm, 48.00 V/μm, and 48.00 V/μm.  Following the initial trips 

from the voltage supply, six runs were recorded (denoted as runs 1 through 6, 

respectively), after which no further currents were recorded.  The data collected from 

runs 1 through 6 are shown in Figure 63. 

The turn-on voltage for runs 4 and 6 was 13.00 V/μm (25 μA/cm2), and 12.0 

V/μm (21 vA/cm2), respectively.  The maximum current density for runs 4 and 6 were 

1.633 mA/cm2 at 18.0 V/μm, and 1.825 mA/cm2 at 17.0 V/μm, respectively.   

Because of the non-linear nature of the F-N plots for runs 4 and 6, only the final 

portion of the plotted data was used to calculate the field enhancement factor.  Figure 64 

shows the upper linear portion of the plotted F-N for runs 4 and 6 from Figure 63.  

Extracting the slope of runs 4 and 6 in Figure 64 using the least squares fit approach, the 

field enhancement factor was calculated to be 8987, and 977, respectively.  Thus, the 

field enhancement factor decreased from the fourth to sixth run.   

For each voltage step on the CNT film grown at 1700oC under 10-3 Torr vacuum 

for 3-hours and annealed for 10-minutes at 620oC in flowing O2, the average maximum 

deviation from the average current measured (for all recorded runs) was 50.3%.  Run 4 

showed the best stability using this figure of measure, with the average maximum 

deviation from the average for each voltage step only 12.8%. 
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Figure 63. Field emission data for the CNT film grown at 1700oC under 10-3 Torr 
vacuum for 3-hours and annealed for 10-minutes at 620oC in flowing O2. 
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Figure 64. Linear portion of the F-N data plotted in Figure 63 for the CNT film grown at 
1700oC under 10-3 Torr vacuum for 3-hours and annealed for 10-minutes at 620oC in 
flowing O2. 

 

As was done for the previous samples, the standard deviation was calculated for 

each group of data collected at each voltage step.  Calculating the percentage the standard 

deviation (for each voltage step) represented with respect to the average for each voltage 

step, and averaging these values, it is seen that on average the standard deviation is 

26.4% of the mean value for each voltage step (taking into account all runs).  For run 4, 

this value was only 6.3%. 

As with the previous samples discussed, burn marks were noted on both the 

copper anode and SiC/CNT sample after its removal from the test apparatus. 
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5-Hour Growth, 10-5 Torr, 1700oC, No Post Growth Annealing: 

 No data was recorded for this sample.  Testing resulting in repeated trips of the 

voltage supply in the 10.0 to 20.0 V/μm range without any stable currents observed on 

the multi-meter.  

 

4.3.2 Comparison of Samples Tested  

Table 5 lists the minimum turn-on electric field, along with a description of any 

possible trend shown over successive runs, for each of the 9 samples tested.  From this 

data, the sample grown at 1700oC under 10-5 Torr vacuum pressure for 0.5-hours with no 

post-growth annealing showed the lowest turn-on electric field.  The table also shows that 

the predominant trend among all samples was that the turn-on electric field increased 

with consecutive runs.  The increase in turn-on electric fields is likely caused by two 

reasons: the desorption of ionic impurities possessing lower work functions than the 

residual CNT surface; or the alteration of the surface topology due to the application of 

electric fields, such that any ‘outcroppings’ are destroyed by arc discharge (explosive 

emission).  This ‘outcropping’ destruction leaves a smoother surface where the remaining 

‘outcroppings’ protrude less above the substrate and therefore suffer from increased field 

screening effects.  The ‘outcropping’ destruction claim is supported in part by the visible 

markings on the copper anode and CNT film after testing.   
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Table 5.  Minimum turn-on electric fields. 

Growth Time 
(hours) 

Growth 
Pressure 

(Torr) 

Post Growth 
Processing: 

Anneal 
Time/Temperature

(minutes / oC) 

Minimum Turn-On Electric 
Field 

(V/μm / μA/cm2) 

Trend Shown Over 
Successive Runs 

0.5 10-5 N/A 3.0 / 54.8 Increased with each run

0.5 10-5  10 / 620 7.5 / 46.5  No trend, only 1 run of 
data 

0.5 10-3  N/A No data No data 

0.5 10-3  10 / 620 5.5 / 36.1  Decreased with each run

3 10-5 N/A 5.5 / 9.61 Increased with each run

3 10-5  10 / 620 3.20 / 16.7  Increased by the final run

3 10-3 N/A 6.0 / 37.7 Remained stable 

3 10-3  10 / 620 13.0 / 25  Remained stable 

5 10-5  N/A No data No data 

 

Because adsorbents adhering to the top layer of the CNT film may possess lower 

work functions and therefore possess lower turn-on electric field properties, one would 

presume they would make the more ideal emission source; this is not the case, however, 

as the adsorbed molecules do not possess the requisite attributes of an ideal field emitter 

as discussed in section 2.2.  Recall that ideal field emission materials are highly 

conductive and stable, have a high aspect ratio, and have nano-scale diameters.  An 

emission point without high conductivity and suitable thermal stability properties will be 

destroyed due to resistive heating during emission. 

The data in Table 5 show that the post-growth annealing process does not cause a 

predictable increase or decrease in the turn-on electric field when compared with the 

corresponding non-annealed sample.  The same post-growth processing recipe will likely 

have different impacts on the samples grown with different parameters.  The 0.5-hour 
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growth samples, for instance, will be affected differently by the anneal than the thicker 

CNT layer of the 3-hour growth samples.  The damage to the 0.5-hour growth samples, 

when compared to the 3-hour growth samples, is likely more extensive and goes beyond 

solely opening the CNT tips.  This more extensive damage likely degrades the 

conductivity of the individual CNTs.  The data gathered for the sample grown at 1700oC 

under 10-5 Torr vacuum pressure for 0.5-hours and annealed for 10-minutes at 620oC 

after growth cannot be used in this discussion, as the Ta ohmic contact was annealed off 

the sample due to unknown reasons.   

The maximum current density achieved by each of the nine samples tested, along 

with a general description these values observed over successive runs, is listed in Table 6.  

The data show that the maximum current density was from the sample growth at 1700oC 

under 10-3 Torr vacuum pressure for 3-hours and with no post-growth annealing, which 

achieved 4.71 mA/cm2 at 6.9 V/μm.  Three of the five samples resulting in noticeable 

trends between runs showed that the maximum current density increased with successive 

runs, while two of the five samples showed a decrease with successive runs.  The two 

samples that decreased with successive runs were both samples that did not receive post-

growth annealing.  This finding contradicts the presumed trend that the samples 

undergoing the post-growth annealing would be more susceptible to damage from the 

applied electric fields.  

The lack of trends in this data shows that the samples’ initial surfaces may have 

contained different amounts and types of adsorbed ionic impurities, which may have 

improved or worsened the sample’s field emission characteristics.  Mitchel et al. [13] 

reported that X-ray photoelectron spectroscopy (XPS) analysis of a CNT film grown on 
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the C-face of SiC at 1700oC for 0.5-hours showed no Si or SiO2 in the film, but that 

graphitic carbon and small amounts of oxygen were found.  Further analysis is necessary 

to characterize the type and amounts of adsorbents on the surfaces of the CNT films. 

Table 6.  Maximum current densities. 

Growth Time 
(hours) 

Growth 
Pressure 

(Torr) 

Post Growth 
Processing: 

Anneal 
Time/Temperature

(minutes / oC) 

Maximum current 
density 

(μA/cm2 / V/μm) 

Trend Shown Over 
Successive Runs 

0.5 10-5 N/A 4247 / 6.7 Decreased drastically 

0.5 10-5  10 / 620 100.7 / 8.20 No trend, only 1 run of data

0.5 10-3  N/A No data No data 

0.5 10-3  10 / 620 794 / 9.0  No trend -- increased, 
decreased, and increased

3 10-5 N/A 600 / 9.50 Decreased with each run 

3 10-5  10 / 620 2117 / 5.9 Increased drastically 

3 10-3 N/A 4709 / 6.9 Increased drastically 

3 10-3  10 / 620 1825 / 17.0 Slightly increased 

5 10-5  N/A No data No data 

 

The electric breakdown that occurs when the power supply registers a current 

overload may have different effects on the emission surfaces of the different samples 

tested.  Comparing the test data shows that electric breakdown did not occur at identical 

electric field strengths for each sample, indicating that different field strengths are needed 

for different types or amounts of adsorbed ionic impurities to be removed from the 

surface or for CNTs to be destroyed.  It is postulated that the sample surfaces undergo 

unpredictable changes that alter the field emission behavior when electric breakdown 

(power supply current overload) occurs.  The findings of a dynamic field emission 
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surface corresponds to the findings of Zhirnov et al. [34], where the destruction of a non-

CNT emission tip was noted during field emission (section 2.5, page 43). 

The calculated field enhancement factors for the consecutive runs on the samples 

tested are shown in Table 7.  The table shows that the field enhancement factor decreased 

over successive runs for all but one sample.  A high field enhancement factor is desirable 

for an emission surface, as it equates to a lower applied electric field necessary for field 

emission.  The field enhancement factor is directly related to the surface topology of a 

sample, and thus a change in its value reflects a change in the sample’s surface topology.  

In general, an increasing field enhancement factor equates to increasing surface 

roughness, while a decreasing value indicates a smoothing of the emission surface.  The 

latter portion of section 2.1 (page 20) discusses the definition and calculation of the field 

enhancement factor.   
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Table 7.  Field enhancement factors (β ) for the samples tested over several test runs. 

Growth Time 
(hours) 

Growth 
Pressure 

(Torr) 

Post Growth 
Processing: 

Anneal 
Time/Temperature

(minutes / oC) 

Calculated Field 
Enhancement Factor for 

Consecutive Runs 
(unitless) 

Trend Shown Over 
Successive Runs 

0.5 10-5 N/A 5091.4, 1428.5, 1651.8, 
and 2107.2 Decreased  

0.5 10-5  10 / 620 No Data No data 

0.5 10-3  N/A No data No data 

0.5 10-3  10 / 620 864.9, 903.1, 2483.4, and 
2545.8 Increased 

3 10-5 N/A 1789.5, 921, and 1374.4 Decreased 

3 10-5  10 / 620 2663, 1645, 2638, and 
369 Decreased 

3 10-3 N/A 3027, 867, 1296, and 496 Decreased 

3 10-3  10 / 620 8987, and 977 Decreased 

5 10-5  N/A No data No data 

 

Table 8 lists the maximum current density, turn-on electric field, and calculated 

field enhancement factor for each sample.  The sample grown at 1700oC under 10-5 Torr 

vacuum pressure for 0.5-hours with no post-growth annealing showed the lowest turn-on 

electric field (lower than 3.0 V/μm), while still exhibiting a high maximum current 

density (4.25 mA/cm2, at 6.7 V/μm).  This sample was drastically altered by the applied 

electric field and electric breakdown, as only one good voltage sweep run was observed.  

The sample grown at 1700oC under 10-3 Torr vacuum pressure for 3-hours with no post-

growth annealing exhibited the highest maximum current density (4.71 mA/cm2, at 6.9 

V/μm), while still having a reasonably low turn-on electric field of 6.0 V/μm.   
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Table 8.  Eto, maximum currents densities, and β  for each sample.  

Growth 
Time 

(hours) 

Growth 
Pressure 

(Torr) 

Post Growth 
Processing: 

Anneal 
Time/Temperature

(minutes / oC) 

Calculated Field 
Enhancement Factor for 

Consecutive runs 
(unitless) 

Minimum Turn-
On Electric Field 
(V/μm / μA/cm2) 

Maximum 
current 
density 

(μA/cm2 / 
V/μm) 

0.5 10-5 N/A 5091.4, 1428.5, 1651.8, 
and 2107.2 3.0 / 54.8 4247 / 6.7 

0.5 10-5  10 / 620 No Data 7.5 / 46.5  100.7 / 8.20

0.5 10-3  N/A No data No data No data 

0.5 10-3  10 / 620 864.9, 903.1, 2483.4, and 
2545.8 5.5 / 36.1  794 / 9.0  

3 10-5 N/A 1789.5, 921, and 1374.4 5.5 / 9.61 600 / 9.50 

3 10-5  10 / 620 2663, 1645, 2638, and 
369 3.20 / 16.7  2117 / 5.9 

3 10-3 N/A 3027, 867, 1296, and 496 6.0 / 37.7 4709 / 6.9 

3 10-3  10 / 620 8987, and 977 13.0 / 25  1825 / 17.0 

5 10-5  N/A No data No data No data 

 

The collected values compare well with those found in the literature.  Table 3 

(page 36), which gives a table of field emission data found in published literature, shows 

that the turn-on electric fields range from 1.6 to 9.8 V/μm.  The data collected for this 

thesis showed turn-on electric fields in the range of less than 3.0 to 13.0 V/μm.   

Referring back to [20], Li et al. reported a turn-on electric field of 4 V/μm, an emission 

current density of 1 mA/cm2 at an electric field of 9.5 V/μm, and a field enhancement 

factor of 4012.  Comparatively, the data collected for this thesis is well in-line with 

previously published data.   

The stability of the field emission current for each sample tested is compared in 

Table 9.  From the data, one sees that each sample tested possesses at least one run with 

promising stability measurements.  The values calculated for the average maximum 
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deviation from the average current measured (for each applied electric field) appear high, 

but considering this value accounts for voltage spikes in the recorded data, they are quite 

low.  This value indicates that, on average, observed voltage spikes are less than 50% the 

average value for each voltage step for all but one sample. 

The standard deviation is the square root of the average squared deviation from 

the mean of a data set, giving a measure of the spread of values in a data set.  The 

standard deviation is calculated such that it is always a non-negative number and has the 

same units as the data set from which it was calculated.  In a normal distribution, about 

68% of the scores are within one standard deviation of the mean and about 95% of the 

scores are within two standards deviations of the mean. Standard deviations are useful in 

comparing sets of data which may have the same mean but a different range. 

In order to bring together all the data for a given sample, the standard deviation 

was calculated for each applied electric field step.  Because each applied electric field 

steps had different means, their standard deviations could not be combined with one 

another.  To account for this, the standard deviation for each voltage step was computed 

as a percentage of the average for that step, yielding a ‘percentage value’.  The 

‘percentage values’ for each applied electric field step were then averaged together, 

yielding an average value for the percent the standard deviations represent of the mean 

for each applied electric field step.  Therefore, given a value of 12.2% in column 5 of 

Table 9, one can state that on average, the standard deviation for each step is 12.2% of 

the step’s average current.  The data given in Table 9, column 5, thus shows that the 

recorded currents were reasonably stable.  
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Table 9.  Comparison of the stability measures for each sample. 

Growth 
Time 

(hours) 

Growth 
Pressure 

(Torr) 

Post Growth 
Processing: Anneal
Time/Temperature

(minutes / oC) 

Avg. Max 
Deviation from 

the Avg. Current 
Measured (%) 

Avg. (over all e-field 
steps) the Std. Dev. 
for a Given Voltage 

Step is from the Avg. 
(%) 

Additional 
Comments 

0.5 10-5 N/A 20.56 12.2 Run 1 only 

0.5 10-5 10 / 620 Not enough data Not enough data N/A 

0.5 10-3 N/A No data No data N/A 

0.5 10-3 10 / 620 51.8 (35.8) 25.1 (17.2) All Runs (run 3 
only) 

3 10-5 N/A 63.5 21 All Runs 

3 10-5 10 / 620 49.9 (23.5) 26.6 (12) All runs (run 3 
only) 

3 10-3 N/A 48.4 (23, 27.2) 20.8 (12.6,13.1) 
All runs (runs 

3 and 4, 
respectively)

3 10-3 10 / 620 50.3 (12.8) 26.4 (6.3) All runs (run 4 
only) 

5 10-5 N/A No data No data N/A 

 

4.3.3 Atomic Force Microscopy Analysis 

In order to correlate the surface roughness of each sample to its field emission 

characteristics, atomic force microscopy (AFM) analysis was performed on each sample.  

For all samples, a Digital Instruments Dimension 3000 NanoScope III was used in 

tapping mode with scan lengths of 500 nm and 2 μm.  Decreased electric field screening 

effects are expected from the samples with rougher surfaces, and likewise should exhibit 

superior field emission characteristics when compared to the samples with smoother 

surfaces.   

Using the atomic force microscope, the surface roughness of a sample can be 

analyzed using the root mean square roughness (RMS) calculation.  The RMS roughness 
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is the standard deviation of the data points representing the profile of the surface scanned 

and is calculated using equation (4.1). 
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where  represents a data point from the scan, nz z  represents the average height of the 

data points from the scan, and  N  represents the total number of data points in the scan.   

Table 10 shows the RMS roughness calculation for the nine samples tested.  The 

RMS roughness was calculated for both 2 μm2 and 500 nm2 scans.  Although the 2 μm2 

and 500 nm2 scans were over the same regions on the sample surfaces, the differences in 

their calculations is likely due to different scan rates used for the two scan sizes.  A faster 

scan rate was used for the larger scan area to reduce the scan time necessary for each 

sample tested. 

The RMS surface roughness values show that for all samples grown, annealing 

for 10-minutes at 620oC under flowing O2 increased the surface roughness.  For the 0.5-

hour growth samples that were not annealed after growth, growth under 10-3 Torr yielded 

rougher surfaces than the samples grown under 10-5 Torr based on the RMS roughness.  

This relationship, however, is reversed for the 3-hour growth samples that were not 

thermally annealed after growth.  For samples grown under 10-5 Torr vacuum conditions 

that did not undergo post-growth thermal annealing, longer growth times yielded rougher 

surfaces (0.5-, 3-, and 5-hour growth times).  This relationship was reversed for samples 

grown under 10-3 Torr vacuum conditions that received no post-growth thermal 
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annealing, as shorter growth times yielded rougher surfaces based on the RMS surface 

roughness calculations. 

Table 10.  Root mean square surface roughness for the samples tested. 

Growth Time 
(hours) 

Growth 
Pressure 

(Torr) 

Post Growth 
Processing: Anneal 
Time/Temperature 

(minutes / oC) 

2 μm2 surface 
scan 
(nm) 

500 nm2 surface 
scan 
(nm) 

0.5 10-5 N/A 1.958 1.563 

0.5 10-5 10 / 620 No data 7.632 

0.5 10-3 N/A 5.269 2.197 

0.5 10-3 10 / 620 14.537 3.975 

3 10-5 N/A 5.279 3.130 

3 10-5 10 / 620 5.436 3.195 

3 10-3 N/A 3.049 1.331 

3 10-3 10 / 620 5.046 3.066 

5 10-5 N/A 8.459 3.936 

 

Based on the roughness data given in Table 10, the following three samples have 

the most ideal field emission surfaces:  both of the CNTs films grown at both 10-5 and  

10-3 Torr vacuum pressure and annealed at 620oC for 10-minutes under flowing O2, and 

the CNT film grown at 10-5 Torr vacuum pressure for 5-hours with no post-growth 

annealing (all three samples were grown at 1700oC).  The field emission data collected on 

these three samples showed below average field emission performances when compared 

to the other samples tested.  For the CNT film grown at 10-5 Torr vacuum pressure and 

annealed at 620oC for 10-minutes under flowing O2, characteristic F-N emission was not 

expected regardless of the surface roughness due to the failure of the sample’s Ta ohmic 

contact.  No data was collected from the 5-hour growth sample (at 1700oC under             
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10-5 Torr vacuum pressure), as only repeated trips of the power supply were observed 

during testing.   

One possible cause for the deviation between the collected field emission data and 

the RMS surface roughness values is that ‘outcroppings’ on the emission surface are 

spaced too closely together, resulting in enhanced electric field screening effects.  

Another possible cause is that although the post-growth anneal treatment opens the tubes 

of the 0.5-hour growth samples making their surfaces rougher, the annealing also 

damages the CNTs causing their conductivity properties to deteriorate.     

In Figures 65 through 73, AFM images of the surface roughness plot and the 3-D 

profile for each of the nine samples are shown.  Based on the visual analysis of these 

images, one would preclude that the following three samples would have the most 

promising field emission surface properties: the sample grown for 5-hours under 10-5 

Torr vacuum pressure at 1700oC and did not receive post-growth annealing; the sample 

grown for 3-hours under 10-5 Torr vacuum pressure at 1700oC and did not receive post-

growth annealing; and the sample grown for 3-hours under 10-3 Torr vacuum pressure at 

1700oC that was annealed for 10-minutes at 620oC after growth.  Likewise, visual 

analysis would preclude that the following three samples would have the poorest field 

emission surface properties: the sample grown for 0.5-hours under 10-3 Torr vacuum 

pressure at 1700oC and did not receive post-growth annealing; the sample grown for 3-

hours under 10-3 Torr vacuum pressure at 1700oC and did not receive post-growth 

annealing; and the sample grown for 0.5-hours under 10-5 Torr vacuum pressure at    

1700oC that was annealed for 10-minutes at 620oC after growth.  These assumptions are 

based on the topographical make-up of the nine surfaces, given that surfaces with 
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‘outcroppings’ will have promising field emission characteristics and relatively flat 

samples will not.   

As in the deviations between the collected field emission data and the RMS 

surface roughness values, there are large discrepancies between the collected FE data and 

visual findings.  The first conclusion drawn here is that the areas examined by the AFM 

probe did not give an adequate representation of the entire surface’s profile.  Samples 

may have surfaces that are not consistent across their entirety.  The next conclusion is 

that any ‘outcroppings’ on sample surfaces are easily destroyed under the application of 

electric fields. 
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Figure 65. Atomic Force Microscopy surface roughness and 3-D profile for the CNT film 
grown at 1700oC under 10-5 Torr vacuum for 0.5-hours and with no post-growth 
annealing.   

 123



 
 

 
Figure 66. Atomic Force Microscopy surface roughness and 3-D profile for the CNT film 
grown at 1700oC under 10-3 Torr vacuum for 0.5-hours and with no post-growth 
annealing. 

 124



 
 

 
Figure 67. Atomic Force Microscopy surface roughness and 3-D profile for the CNT film 
grown at 1700oC under 10-5 Torr vacuum for 0.5-hours and annealed for 10-minutes at 
620oC in flowing O2.  
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Figure 68. Atomic Force Microscopy surface roughness and 3-D profile for the CNT film 
grown at 1700oC under 10-3 Torr vacuum for 0.5-hours and annealed for 10-minutes at 
620oC in flowing O2.  
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Figure 69. Atomic Force Microscopy surface roughness and 3-D profile for the CNT film 
grown at 1700oC under 10-5 Torr vacuum for 3-hours and with no post-growth annealing. 
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Figure 70. Atomic Force Microscopy surface roughness and 3-D profile for the CNT film 
grown at 1700oC under 10-3 Torr vacuum for 3-hours and with no post-growth annealing. 
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Figure 71. Atomic Force Microscopy surface roughness and 3-D profile for the CNT film 
grown at 1700oC under 10-5 Torr vacuum for 3-hours and annealed for 10-minutes at 
620oC in flowing O2.   
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Figure 72. Atomic Force Microscopy surface roughness and 3-D profile for the CNT film 
grown at 1700oC under 10-3 Torr vacuum for 3-hours and annealed for 10-minutes at 
620oC in flowing O2.  
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Figure 73. Atomic Force Microscopy surface roughness and 3-D profile for the CNT film 
grown at 1700oC under 10-5 Torr vacuum for 5-hours and with no post-growth annealing. 
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4.4 Chapter Summary 

This chapter discussed the results collected during the experimental portion of the 

thesis.  The results of the Transfer Length Method analysis of the Ta ohmic contact 

deposited on the backside of the SiC wafers were given, followed by the results of the 

post-growth annealing approach to open the CNTs.    Lastly, the field emission properties 

of the CNT films tested were compared with one another, highlighting apparent trends 

and discussing inadequacies in the data collected and experimental methodology
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Chapter 5:  Conclusions and Recommendations 

 The research presented in this thesis is an investigation of the field emission 

properties of CNT films grown through the surface decomposition of silicon carbide 

substrates.  This chapter contains a summary of the experimental findings, along with 

suggestions for future research.   

5.1 Thesis Summary 

The objective of this research was to fabricate CNT films using various growth 

parameters on silicon carbide substrates and then to measure the films’ associated turn-on 

voltage, threshold voltage, and maximum current density exhibited.  The data collected 

were compared with test data found in the literature associated with field emission tests 

performed on CNT films grown using catalyst metals and non-CNT film emitters (Tables 

1 – 3).  Additionally, the stability and ability of the CNT films grown by surface 

decomposition to withstand prolonged high field conditions was evaluated.   

The most notable characteristic of the CNT films grown using AFRL/MLPS’s 

method is that growth occurs without the use of catalyst metals, yielding CNTs that are 

potentially of greater purity than CNTs grown through the use of catalyst metals.  The 

research performed for this thesis aimed to demonstrate whether use of CNT films grown 

in this unique manner would show improvement over catalyst-grown CNT films.  

Although the samples fabricated and tested did not demonstrate improved field 

emission characteristics when compared to values found in the literature, the data 

collected show that further investigation is warranted regarding the CNTs’ emission 

capabilities.  From the collected data, the lowest turn-on electric field was found to be 
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lower than 3.0 V/μm, while exhibiting a high maximum current density of 4.25 mA/cm2 

at 6.7 V/μm.   

The application of electric fields had notable effects on the samples tested.  In 

some instances, the application of an electric field resulted in improved field emission 

characteristics in regards to lowered turn-on electric fields and increased maximum 

current densities; while in other cases, the field emission performances drastically 

deteriorated.  This conflicting trend was concluded to be the result of different strength 

electric fields having different effects on the samples tested.  This claim is substantiated 

by the highly different current versus applied electric field curves for successive runs for 

a given sample.  Second, the CNT film is concluded to be not as stable as anticipated, as 

proven by the markings on the CNT film and copper anode after testing.   

It is also concluded that the samples had different types and amounts of adsorbed 

molecules on their surfaces.  The presence of adsorbents on the CNT films was verified 

by Mitchel and coworkers [13], whom reported that X-ray photoelectron spectroscopy 

(XPS) analysis showed that graphitic carbon and small amounts of oxygen were found in 

the film.  Based on this knowledge, it is assumed that the adsorbed ionic impurities 

contributed to the instability of the films’ field emission properties.  The adsorbed 

impurities likely decreased the work function at various spots on the emission surface, 

causing points with lowered threshold fields on the surface.  As the ionic impurities were 

desorbed, the emission current fell until the threshold field of the residual material – in 

this case the CNT film – was reached.  This conclusion was drawn in part from other 

works found in the literature, and is supported by the saw-tooth nature of the current 

versus applied electric field curves given in Figures 46 and 63.   
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The presence of adsorbed molecules altered the field emission performance of the 

samples in different manners, and required the application of an electric field to condition 

the emission surface.  The conditioning phase was not fully understood, as no consistency 

between samples was evident.  

Electric breakdown (power supply current overload) occurred if strong electric 

fields were applied for prolonged periods of time between the cathode and anode.  In 

addition, after electric breakdown occurred, marks were visible on the SiC surface within 

the field emission area of all samples tested.  SEM analysis of the marks showed that the 

emission surface had been etched, appearing as though the CNTs were sublimated off of 

the SiC substrate in some spots.  Markings noticeable to the naked eye were also apparent 

on the copper anode.  This suggests that the CNT material evaporated off of the emission 

surface and impacted the anode, which likely resulted in the observed electric breakdown 

or perception of electric breakdown by the power supply.   

Although AFM analysis showed that the annealed samples possessed rougher 

surfaces when compared to their corresponding non-annealed samples, the field emission 

results did not correspond to this finding.  One conclusion is that the annealing damaged 

the tube walls and deteriorated their favorable conductive properties, as either the 620oC 

anneal temperature was too hot, or the 10-minute anneal time was too long to open the 

CNTs in a controlled manner.  AFM analysis failed to show that growth in 10-3 Torr 

vacuum conditions resulted in CNT films that were less dense than films grown in 10-5 

Torr vacuum conditions.  A comparison of the root-mean-square surface roughness 

values of the 0.5-hour growth runs from the two growth pressures with each other, and 
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likewise between the two 3-hour growth runs, showed no trend in surface roughness as a 

function of growth pressure.   

5.2 Recommendations for Continued Work 

Knowledge gained from this thesis has opened the door for future efforts to 

further investigate the field emission characteristics of CNT films fabricated through the 

surface decomposition of SiC substrates.  Although the fabricated samples produced 

currents that were indicative of F-N field emission, more work needs to be done to 

characterize the effects of various growth parameters and post-growth annealing to open 

the CNTs.   

While CNTs grown using the SiC surface decomposition method were 

investigated because they were perceived to require less post-growth processing, one 

major recommendation of this thesis is to more thoroughly understand post-growth steps 

to condition the field emission surface.  TEM analysis of the opened CNT samples would 

yield information on the structural make-up of the CNTs after post-growth thermal 

annealing.  The post-growth thermal annealing process is presumed to do more than 

simply remove the CNT tips.  The effects of varied annealing times and temperatures is 

an area of study deserving of further investigation.  More distinctive characterization of 

the surface effects caused by different annealing times on samples with different CNT 

growth times will allow for the optimization of the surface topology for field emission. 

The use of indium-tin-oxide (ITO) coated glass is recommended to visually 

monitor the distribution of the emission points within the emission area.  The fabrication 

 136



of numerous ITO anodes is suggested due to the strong likelihood of damage being 

caused to the anode due to electric breakdown at strong electric fields.   

Different thicknesses of Teflon® spacers, along with the means to create smaller 

holes in the Teflon® are recommended.  The use of thinner Teflon® spacers will require 

less voltage to be applied to achieve equivalent electric field strengths.  Patterning of the 

CNT films is recommended in a manner such that small clusters of vertically aligned 

CNTs can be produced to minimize electric field screening effects between emission 

sites.  Moreover, further work is necessary to characterize the density of CNT films 

grown at varied vacuum pressures.   

The search for a sample with known field emission characteristics continued 

throughout this research.  This search should be continued so that data collected from 

CNT test samples can be compared to known field emission samples’ data.  It is noted 

that no works cited in this thesis were found to have verified their test setup with baseline 

samples.  This non-existence of baseline test samples makes it difficult to compare field 

emission data found in the literature.   

Lastly, the use of different power supply and multi-meter equipment is advised.  

Specifically, a Keithley 237 High-Voltage Source-Measurement Unit, capable of 

supplying up to 1100 VDC and reading current with 10 fA sensitivity, is recommended 

for purchase.  Although having a lower maximum voltage which requires the use of 

thinner Teflon® spacers (in the range of 25 μm), the increased current sensitivity of the 

voltage source will eliminate the need for a stand-alone multi-meter.   
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Appendix A:  Carbon Nanotube Properties 

Since their discovery by Iijima in 1991 [3], CNTs have been extensively studied 

for their electrical and mechanical properties.  This appendix discusses the background of 

CNT electrical and mechanical properties, along with the growth methods of CNTs.    

A.1 Background on CNT Properties 

CNT types are distinctively described by the number of hollow concentric 

cylinders of carbon atoms they comprise of, ranging from one to many layers, and 

likewise are referred to as either single-walled or multi-walled CNTs.  The single-walled 

CNT’s structure can be described as a single sheet of graphite rolled into a tube [4], and 

is illustrated in Figure 74. 

 
Figure 74. Illustration of the single-walled CNT structure [14]. 

 

The most prominent characteristic of CNTs is simply their size, as they typically 

have diameters ranging from 1 to 50 nm and lengths of several micrometers [4].  This 

large length to radius ratio makes CNTs nearly one dimensional, where operating 

characteristics are driven heavily by quantum mechanics.  Additionally, because CNTs 

are held together by strong carbon-to-carbon bonds, they possess extremely high 
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mechanical stability and chemical inertness.  One source notes that CNTs have a Young’s 

modulus about ten times higher than that of steel [40].1  The electrical properties of 

CNTs are even more promising, as theoretical predictions show that electrons can ‘shoot’ 

up and down the tube, conducting electricity with virtually no resistance.  Additionally, 

CNTs can behave as metals or semiconductors.  Table 11 summarizes several key 

properties of CNTs [5]. 

Table 11.  Summary of CNT Properties, after [41]. 

Property Feature 

Mechanical 
Young’s modulus of 1 TPa (5x that of steel); tensile strength 45 GPa 
(20x that of steel); density of 1.4 g/cm3 (Steel: ranges from 7.7 to 8.03 
g/cm3); and a strength/weight ratio 500x greater than Al, steel, and Ti.  

Chemical Stable in solvent, acids, and bases.  All carbon-to-carbon chemical bonds 
of are filled, leaving them chemically inert. 

Thermal 
Higher thermal stability than graphite and amorphous carbons.  Theory 
predicts their thermal conduction is 600 W/m-K (Copper is 400) to 
3kW/m-K (Diamond is 2 kW/m-K). 

Electrical 

Suitable for microelectronics, as they can be semiconducting or metallic 
depending on their structure. CNTs are capable of carrying a current 
density of 109 A/cm2 [41]. Carrier transport is one dimensional, implying 
reduced phase space for scattering of carriers. 

  

A.2 CNT Physical Structure and Associated Electrical Properties 

Studies exploring the structure of CNTs using high-resolution microscopy 

techniques show that they are cylindrical structures based on the hexagonal lattice of 

carbon atoms formed of crystalline graphite [4].  Depending on how the two-dimensional 

graphite sheet is ‘rolled up,’ three types of CNTs are possible: armchair, zigzag, and 

chiral.  The different types are explained in terms of the unit cell of a CNT, which is 

                                                 

1 Young's modulus is the elastic modulus for tension, and is the force per unit cross section of the material 
divided by the fractional increase in length. 
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described by a vector known as the chiral vector (Ch), and is illustrated in Figure 75 [14].  

The chiral vector of the CNT, Ch, is defined by Ch = nâ1 + mâ2, where â1 and â2 are unit 

vectors in the basal plane of two-dimensional hexagonal lattice, and n and m are integers.  

The three types of CNTs are illustrated in Figure 76 [42].  When the graphite sheet is 

rolled up to form the CNT, the ends of the chiral vector meet.  The chiral vector thus 

forms the circumference of the CNT's circular cross-section, and different values of n and 

m lead to different CNT structures.  With the values n and m (often denoted as (n, m)), 

the diameter of the tube formed (D) can be determined using [41]:  

  (A.1)  1/ 2 2 2 1/ 2
ccD (3 )a ( )    (Å)n m nm= + +

where ac-c is the distance between neighboring carbon atoms in a flat graphite sheet and is 

approximately 1.42 Å. 

a1

a2 (n, m) = (4, 1)

a1

a2 (n, m) = (4, 1)

 

Figure 75. Depiction of the CNT chiral vector, after [14]. 

 

The electrical properties of a CNT depend on the values of n and m.  A variation 

in the chiral vector can cause a CNT to change behavior electrically from that of a metal 
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to that of a large bandgap semiconductor [41].  Calculations show that the electrical 

characterization of a CNT is metallic provided that n – m = 3i, where i is zero or an 

integer; and semiconducting otherwise.   

 

 
Figure 76. Depiction of chiral, zigzag, and armchair CNTs [42]. 

 

The band structure of single-walled CNTs is derived from the band structure of 

graphene.  Graphene, simply a single atomic layer of graphite, consists of a two-

dimensional honeycomb structure with each carbon atom bound to three other carbon 

atoms by covalent sp2 bonds [43].  Graphene’s band structure has states crossing the 

Fermi level at six points in k-space, as shown in Figure 77.  It is called a zero-bandgap 

semiconductor because it exhibits metallic characteristics in some directions and 

semiconducting in others.   

In a single-walled CNT, the momentum of the electrons moving around the 

circumference of the tube is quantized, reducing the available states to slices through the 
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two-dimensional band structure.  The quantization is induced by the folding of the 

graphene layer to create a CNT, and causes a confinement of electrons around the 

circumference of the CNT.   

 
Figure 77. Illustration of the band structure of graphene [5]. 

 

With a CNT’s chiral characteristics, the bandgap, Eg, can be calculated.  Eg varies 

inversely with tube diameter, under the condition [41]:  

 o cc2y aE   (eV)
Dg =  (A.2) 

where yo is the carbon to carbon bond energy in eV, D is the tube’s diameter given by 

equation (A.1), and acc is the nearest neighbor atomic distance (bond length).  The 

carbon-carbon bond energy is approximately 2.5 eV [41].  Typical CNT bandgaps vary 

from 10 meV to 1 eV [41].   

Typically, theoretical focus is placed on single-walled CNTs, as opposed to multi-

walled CNT’s due to the multi-walled CNT’s complex structure, where each outer shell 

can possess different electronic character.  Also, multi-walled CNTs have complex shell-

to-shell interactions that are difficult to model.  Multi-walled CNTs show 1-D or 2-D 

characteristics, depending on their diameter and the property under investigation [5]. 
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A.3 Carbon Nanotube Growth Methods 

 There are several methods to grow CNTs, each resulting in different purity, size, 

shape, and number of ‘walls.’  During the past decade, many studies have characterized 

various preparation methods.  The three primary methods used in preparing CNTs 

include (a) electric arc discharge, (b) laser ablation, (c) chemical vapor deposition 

(CVD).  In most all of the derivatives of these three techniques, a metal catalyst (typically 

Co, Fe, and/or Ni) in the form of nano-particles (particle radii ~10 nm) is used [40].   

In laser ablation, a quartz tube containing argon gas and a graphite target are 

heated to 1200oC [40].  Contained in the tube, but somewhat outside the furnace, is a 

water-cooled copper collector.  The graphite target contains small amounts of cobalt and 

nickel that act as catalysts for the formation of the tubes.  A pulsed laser incident on the 

target evaporates carbon from the graphite, and the argon gas sweeps the evaporated 

carbon atoms from the higher temperature zone to the cooler copper collector where the 

carbon atoms condense to form CNTs [40].  CNTs 10 - 20 nm in diameter and 100 μm 

long can be made by this method [40]. 

 In the electric arc discharge method, a potential of 20 - 25 V is applied across 

cylindrical carbon electrodes of 5 - 20 μm diameter and separated by 1 mm at a 500 Torr 

pressure of flowing helium gas [40].  Carbon atoms are ejected from the positive 

electrode and form CNTs on the negative electrode.  As the CNTs form, the length of the 

positive electrode decreases, and a carbon deposit forms on the negative electrode.  To 

produce single-walled CNTs, a small amount of cobalt, nickel, or iron is used as a 

catalyst.  If no catalysts are used, the fabricated CNTs are multi-walled [40].  The electric 

arc method produces single-walled CNTs 1 – 5 nm in diameter and lengths up to 1 μm.  
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 Chemical vapor deposition (CVD), currently the most widely used method, 

involves decomposing a hydrocarbon gas (such as methane (CH4)) at 550-900oC.  As the 

hydrocarbon gas decomposes, carbon atoms are produced/freed that condense on a cooler 

substrate containing metal catalysts.   

One typical problem encountered during synthesis methods involving catalyst 

metals is that there is an unwanted presence of the metal catalyst particles in the CNT 

product. The removal of these unwanted particles from the CNT is difficult and usually 

damages the CNTs [5].   

Similar to semiconductor device processing, where the growth materials and 

device fabrication is two distinct steps, CNT device fabrication consists of two steps as 

well.  Because CNT growth procedures (even those termed ‘selective growth’) often 

result in large bundles of CNTs where there is little control over the type of CNTs grown 

(semiconducting or metallic) and their orientation, post growth methods for fabricating 

CNT-based devices have been developed.  Figure 78 shows the random orientation and 

entanglement of CNTs grown using thermal CVD.   

 

 
Figure 78. SEM image of CNTs grown from a catalytic island using thermal CVD, scale 
unknown [44]. 

 144



 
 The mechanisms for CNT growth are not fully understood.  A critical area of 

improvement lays in the development of self-assembly growth procedures.  The ability to 

fabricate uniform CNT arrays, with precise control of their chirality characteristics, and 

to position them precisely and controllably onto other nanostructures, is essential for 

CNT devices to be marketed commercially.     
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Appendix B:  Experimental Setup Details and Operating Procedures 

B.1 Sample Holding Apparatus: 

The dimensions of the sample holding apparatus are as follows (all dimensions 

are given in length x width x height): 

Acrylic plastic base:   7.6 cm x 5 cm x 0.5 cm 

Copper base:   2.5 cm x 2.5 cm x 0.6 cm 

Copper anode:  1.4 cm x 1.4 cm x 0.6 cm 

Holding arms:  2.5 cm x 0.6 cm x 0.4 cm 

 Actual fabrication of the sample holder was carried out with the support of the 

AFIT model shop.   
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B.2 SiC Decomposition Procedure: 

The following steps are performed using AFRL/MLPS’s Oxy-Gon graphite 

resistance heating furnace to decompose the SiC samples to form CNTs (courtesy of Dr. 

John Boeckl, AFRL/MLPS). 

System Start-up (process selection switch in STANDBY): 
 
1. Turn ON the 80 psi house air (the vent and vacuum valves are air pressure activated). 

2. Turn ON the Main Power switch (the handle is on the lower front of the main panel). 

3. Turn the Roughing Pump ON (green button).  The Roughing Pump will pull on the 

turbo-molecular pump -- to ~10-3 Torr on TC1 (this will take ~15 minutes). 

4. Turn ON the ion gauge controller to read TC1 (it is the left switch on the gauge 

panel). 

5. Turn the turbo-molecular pump ON (green button); it will pull on itself. 

6. If the chamber is under vacuum, turn the process selection switch to VENT GAS, 

otherwise go to step 8. 

7. Turn ON the low-O2, N2, or Ar at the tank and regulator; open the ball valve on the 

furnace to 25 (this step vents the chamber, allowing it to open). 

8. When the chamber vents, turn OFF the low-O2, N2, or Ar ball valve, tank, and 

regulator. 

9. OPEN the chamber, load the samples on the graphite cylinder, and SECURE the 

chamber door. 

Soft Bake: 

10. Turn the process selection switch to STANDBY; then to ROUGH. 
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11. Run the roughing pump until chamber is in the mid 10-2 Torr range (read TC2); this 

will take several minutes, and the pressure will slightly increase at TC1 (~15 

minutes). 

12. Turn process selection switch to HI VACUUM (turbo-molecular pump will pull on 

the chamber, roughing pump pulls on the turbo-molecular pump; TC2 will drop 

quickly; TC1 increases, then drops more slowly. 

13. Turn ON the ion gauge filament when TC2 is in the 10-3 Torr range.  Continue 

pumping until it is in the ~1 x 10-4 Torr range (note: ion gauge will not light if the 

pressure is too high). 

14. OPEN the H2O inlet and outlet hand valves (note: do this only if the chamber is under 

vacuum or filled with an inert gas). 

15. Ensure the yellow H2O handles are open and that the flow meters are turning. 

16. RESET the over temperature controller for soft bake (red button on top right voltage 

meter). 

17. Ensure the Vacuum Interlock Bypass is OFF. Turn the heat zone ON. 

18. Ramp up AUTO/MAN power controller to 20% for soft bake (press AUTO/MAN 

key and one of the arrow keys simultaneously to change value). 

19. Soft Bake chamber until the pressure reaches approximately 1.5 x 10-4 Torr range 

(bake for approximately 15 minutes once above 200oC). 

Decomposition Process:

20. Ramp up AUTO/MAN power controller to obtain target temperature (for graphite 

elements, limit A to 55% for T < 1150oC; then adjust A to 69%, reduce A when ~ 

25oC below target value). 
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21. Decompose the sample (i.e. run heat) for desired time (adjust AUTO/MAN controller 

as needed). 

22. At the desired time, ramp down AUTO/MAN controller to 0%. 

23. After 5 minutes into ramp down, turn OFF the Heat Zone (this allows the power 

supply to cool). 

24. When the temperature is ≤ 150oC, CLOSE the H2O inlet and outlet hand valves. 

25. Turn OFF the ion gauge filament (same switch used to turn it on). 

26. Turn ON the low-O2, N2, or Ar at tank and regulator; open the ball valve on the 

furnace to 25. 

27. Turn the process selection switch to VENT GAS to backfill the chamber.  

28. When the chamber temperature is ~ 30oC, CLOSE the low-O2, N2, or Ar at the tank 

and regulator; OPEN the chamber; UNLOAD the samples; SECURE the chamber 

door.  

29. If additional runs will be completed in the same day, load the new sample and return 

to step 10. 

System Shutdown: 
 
30. Turn process selection switch to STANDBY; then to ROUGH. 

31. Turn ON the ion gauge controller to read TCs. 

32. Run the roughing pump until TC2 reads approximately 10-2 Torr, then turn the 

process selection switch to HI VACUUM until TC2 reads approximately 10-3 Torr. 

33. Turn the process selection switch to STANDBY; turn OFF the turbo-molecular pump. 

34. Turn OFF the vacuum interlock bypass. 

35. Turn OFF the roughing pump. 
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36. Turn OFF the ion gauge controller. 

37. Turn OFF the main power switch. 

38. Turn OFF 80 psi house air. 

 

* For growth at 10-3 Torr vacuum pressure, the turbo-molecular pump is never turned on.  

The Vacuum Interlock Bypass must be turned on in this setup; otherwise the Heat Zone 

cannot be turned on. 
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B.3 Detailed Description of the Vacuum System Setup 

Table 12.  List of the equipment used in the experimental setup.

Product Purpose Obtained from: 

Stanford Research 
Systems, Inc. High Voltage 

Supply 

Apply high voltages between the anode and 
cathode (up to 5000 VDC). AFIT/ENG Property 

Agilent 34401A Multi-Meter Record the field emission current to 10 nA 
sensitivity AFIT/ENG Property 

Drytel 31 Pumping System Rough pump the vacuum chamber Borrowed from 
AFIT/ENP 

Thermocouple Pressure 
Gauge/Controller 

Measure the vacuum pressure from 
atmosphere to 10-3 Torr 

Borrowed from 
AFIT/ENP 

Leybold TURBOVAC 150 
CSV turbomolecular pump 

and controller 

Enable the vacuum chamber to reach high 
vacuum conditions 

Borrowed from 
AFRL/MLP 

Neslab RTE 110 
chiller/circulation unit Keep the turbomolecular pump cool Borrowed from 

AFIT/ENG 

Gate Valve Close off the vacuum chamber from the 
pumping components when venting 

Borrowed from 
AFRL/MLP 

Vacuum chamber Provide space to conduct the experiment Borrowed from 
AFIT/ENP 

Ion gauge and controller Measure the vacuum pressure below 10-3 
Torr 

Purchased from Kurt J. 
Lesker Company 

Miniature High Voltage 
(MHV) coaxial feedthrough, 

2 terminal 

Pass electrical lines into/out-of the vacuum 
chamber 

Purchased from Kurt J. 
Lesker Company 

In-vacuum coaxial cables Make connections within the vacuum 
chamber with minimal out-gassing 

Purchased from Kurt J. 
Lesker Company 

36" braided vacuum hose Connect the roughing pump to the turbo 
pump 

Borrowed from 
AFIT/ENP 

Various sized copper 
flanges 

One-time use copper seals at each ConFlat 
flange (the stainless steel flange's knife 

edge cuts into the copper flange, creating 
an ultra-high vacuum seal) 

Purchased from MDC 
Vacuum Components, 

Inc. 
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Stanford Research Systems, Inc. High Voltage Supply and Agilent Multi-Meter (left), 
and schematic of the dual MHV electrical feedthrough (right). 

 

 

 
Depiction of the vacuum chamber showing the nitrogen line for backfilling the chamber, 
and the electrical feedthrough. 
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Appendix C:  Supplementary Data and Images 

 
Resultant film from a 1-minute anneal at 620oC under flowing O2 on CNT film grown for 
1-hour under 10-5 Torr vacuum at 1700oC (face unknown, 30o stage tilt, 150,000x 
magnification). 

 

 
Resultant film from a 1-minute anneal at 620oC under flowing O2 on CNT film grown for 
1-hour under 10-5 Torr vacuum at 1700oC (face unknown, 30o stage tilt, 100,000x 
magnification). 
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Resultant film from a 5-minute anneal at 620oC under flowing O2 on CNT film grown for 
1-hour under 10-5 Torr vacuum at 1700oC (face unknown, 30o stage tilt, 25,000x 
magnification). 
 

 
Resultant film from a 5-minute anneal at 620oC under flowing O2 on CNT film grown for 
1-hour under 10-5 Torr vacuum at 1700oC (face unknown, 30o stage tilt, 100,000x 
magnification). 
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Resultant film from a 5-minute anneal at 620oC under flowing O2 on CNT film grown for 
1-hour under 10-5 Torr vacuum at 1700oC (face unknown, 30o stage tilt, 150,000x 
magnification). 
 

 
Resultant film from a 10-minute anneal at 620oC under flowing O2 on CNT film grown 
for 1-hour under 10-5 Torr vacuum at 1700oC, showing no CNTs remaining on the SiC 
surface (face unknown, 30o stage tilt, 100,000x magnification). 
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